Et_rot_bifluid Class Reference
[Stars and black holes]

Class for two-fluid rotating relativistic stars. More...

#include <et_rot_bifluid.h>

Inheritance diagram for Et_rot_bifluid:
Etoile_rot Etoile

List of all members.

Public Member Functions

 Et_rot_bifluid (Map &mp_i, int nzet_i, bool relat, const Eos_bifluid &eos_i)
 Standard constructor.
 Et_rot_bifluid (const Et_rot_bifluid &)
 Copy constructor.
 Et_rot_bifluid (Map &mp_i, const Eos_bifluid &eos_i, FILE *fich)
 Constructor from a file (see sauve(FILE*) ) Works only for relativistic stars.
virtual ~Et_rot_bifluid ()
 Destructor.
void operator= (const Et_rot_bifluid &)
 Assignment to another Et_rot_bifluid.
void set_enthalpies (const Cmp &, const Cmp &)
 Sets both enthalpy profiles.
void equilibrium_spher_bi (double ent_c, double ent_c2, double precis=1.e-14)
 Computes a spherical static configuration.
void equil_spher_regular (double ent_c, double ent_c2, double precis=1.e-14)
 Computes a spherical static configuration.
const Eos_bifluidget_eos () const
 Returns the equation of state.
const Tenseurget_ent2 () const
 Returns the enthalpy field for fluid 2.
const Tenseurget_nbar2 () const
 Returns the proper baryon density for fluid 2.
const Tenseurget_delta_car () const
 Returns the "relative velocity" (squared) $\Delta^2$ of the two fluids.
const Tenseurget_gam_euler2 () const
 Returns the Lorentz factor between the fluid 2 and Eulerian observers.
double get_omega2 () const
 Returns the rotation angular velocity of fluid 2([f_unit] ).
const Tenseurget_uuu2 () const
 Returns the norm of the fluid 2 3-velocity with respect to the eulerian frame.
virtual void sauve (FILE *) const
 Save in a file.
virtual ostream & operator>> (ostream &) const
 Operator >> (virtual function called by the operator <<).
virtual void partial_display (ostream &) const
 Printing of some informations, excluding all global quantities.
virtual const Itbll_surf () const
 Description of the surface of fluid 1: returns a 2-D Itbl containing the values of the domain index l on the surface at the collocation points in $(\theta', \phi')$.
const Itbll_surf2 () const
 Description of the surface of fluid 2: returns a 2-D Itbl containing the values of the domain index l on the surface at the collocation points in $(\theta', \phi')$.
const Tblxi_surf2 () const
 Description of the surface of fluid 2: returns a 2-D Tbl containing the values of the radial coordinate $\xi$ on the surface at the collocation points in $(\theta', \phi')$.
double ray_eq2 () const
 Coordinate radius for fluid 2 at $\phi=0$, $\theta=\pi/2$ [r_unit].
double ray_eq2_pis2 () const
 Coordinate radius for fluid 2 at $\phi=\pi/2$, $\theta=\pi/2$ [r_unit].
double ray_eq2_pi () const
 Coordinate radius for fluid 2 at $\phi=\pi$, $\theta=\pi/2$ [r_unit].
double ray_pole2 () const
 Coordinate radius for fluid 2 at $\theta=0$ [r_unit].
double mass_b1 () const
 Baryon mass of fluid 1.
double mass_b2 () const
 Baryon mass of fluid 2.
virtual double mass_b () const
 Total Baryon mass.
virtual double mass_g () const
 Gravitational mass.
virtual double angu_mom () const
 Angular momentum.
virtual double grv2 () const
 Error on the virial identity GRV2.
virtual double grv3 (ostream *ost=0x0) const
 Error on the virial identity GRV3.
virtual double r_circ2 () const
 Circumferential radius for fluid 2.
virtual double aplat2 () const
 Flatening r_pole/r_eq for fluid 2.
virtual double mom_quad () const
 Quadrupole moment.
virtual void hydro_euler ()
 Computes the hydrodynamical quantities relative to the Eulerian observer from those in the fluid frame.
virtual void equation_of_state ()
 Computes the proper baryon and energy densities, as well as pressure from the enthalpies and both velocities.
void equilibrium_bi (double ent_c, double ent_c2, double omega0, double omega20, const Tbl &ent_limit, const Tbl &ent2_limit, const Itbl &icontrol, const Tbl &control, Tbl &diff, int mer_mass, double mbar1_wanted, double mbar2_wanted, double aexp_mass)
 Computes an equilibrium configuration.
virtual double get_omega_c () const
 Returns the central value of the rotation angular velocity ([f_unit] ).
const Tenseurget_bbb () const
 Returns the metric factor B.
const Tenseurget_b_car () const
 Returns the square of the metric factor B.
const Tenseurget_nphi () const
 Returns the metric coefficient $N^\varphi$.
const Tenseurget_tnphi () const
 Returns the component $\tilde N^\varphi = N^\varphi r\sin\theta$ of the shift vector.
const Tenseurget_uuu () const
 Returns the norm of u_euler.
const Tenseurget_logn () const
 Returns the metric potential $\nu = \ln N$ = logn_auto.
const Tenseurget_nuf () const
 Returns the part of the Metric potential $\nu = \ln N$ = logn generated by the matter terms.
const Tenseurget_nuq () const
 Returns the Part of the Metric potential $\nu = \ln N$ = logn generated by the quadratic terms.
const Tenseurget_dzeta () const
 Returns the Metric potential $\zeta = \ln(AN)$ = beta_auto.
const Tenseurget_tggg () const
 Returns the Metric potential $\tilde G = (NB-1) r\sin\theta$.
const Tenseurget_w_shift () const
 Returns the vector $W^i$ used in the decomposition of shift , following Shibata's prescription [Prog.
const Tenseurget_khi_shift () const
 Returns the scalar $\chi$ used in the decomposition of shift following Shibata's prescription [Prog.
const Tenseur_symget_tkij () const
 Returns the tensor ${\tilde K_{ij}}$ related to the extrinsic curvature tensor by ${\tilde K_{ij}} = B^{-2} K_{ij}$.
const Tenseurget_ak_car () const
 Returns the scalar $A^2 K_{ij} K^{ij}$.
virtual void display_poly (ostream &) const
 Display in polytropic units.
virtual double tsw () const
 Ratio T/W.
virtual double r_circ () const
 Circumferential radius.
virtual double aplat () const
 Flatening r_pole/r_eq.
virtual double z_eqf () const
 Forward redshift factor at equator.
virtual double z_eqb () const
 Backward redshift factor at equator.
virtual double z_pole () const
 Redshift factor at North pole.
virtual double r_isco (ostream *ost=0x0) const
 Circumferential radius of the innermost stable circular orbit (ISCO).
virtual double f_isco () const
 Orbital frequency at the innermost stable circular orbit (ISCO).
virtual double espec_isco () const
 Energy of a particle on the ISCO.
virtual double lspec_isco () const
 Angular momentum of a particle on the ISCO.
virtual double f_eccentric (double ecc, double periast, ostream *ost=0x0) const
 Computation of frequency of eccentric orbits.
virtual double f_eq () const
 Orbital frequency at the equator.
void update_metric ()
 Computes metric coefficients from known potentials.
void fait_shift ()
 Computes shift from w_shift and khi_shift according to Shibata's prescription [Prog.
void fait_nphi ()
 Computes tnphi and nphi from the Cartesian components of the shift, stored in shift .
void extrinsic_curvature ()
 Computes tkij and ak_car from shift , nnn and b_car .
virtual void equilibrium (double ent_c, double omega0, double fact_omega, int nzadapt, const Tbl &ent_limit, const Itbl &icontrol, const Tbl &control, double mbar_wanted, double aexp_mass, Tbl &diff, Param *=0x0)
 Computes an equilibrium configuration.
Mapset_mp ()
 Read/write of the mapping.
void set_enthalpy (const Cmp &)
 Assignment of the enthalpy field.
virtual void equilibrium_spher (double ent_c, double precis=1.e-14, const Tbl *ent_limit=0x0)
 Computes a spherical static configuration.
void equil_spher_regular (double ent_c, double precis=1.e-14)
 Computes a spherical static configuration.
virtual void equil_spher_falloff (double ent_c, double precis=1.e-14)
 Computes a spherical static configuration with the outer boundary condition at a finite radius.
const Mapget_mp () const
 Returns the mapping.
int get_nzet () const
 Returns the number of domains occupied by the star.
bool is_relativistic () const
 Returns true for a relativistic star, false for a Newtonian one.
const Tenseurget_ent () const
 Returns the enthalpy field.
const Tenseurget_nbar () const
 Returns the proper baryon density.
const Tenseurget_ener () const
 Returns the proper total energy density.
const Tenseurget_press () const
 Returns the fluid pressure.
const Tenseurget_ener_euler () const
 Returns the total energy density with respect to the Eulerian observer.
const Tenseurget_s_euler () const
 Returns the trace of the stress tensor in the Eulerian frame.
const Tenseurget_gam_euler () const
 Returns the Lorentz factor between the fluid and Eulerian observers.
const Tenseurget_u_euler () const
 Returns the fluid 3-velocity with respect to the Eulerian observer.
const Tenseurget_logn_auto () const
 Returns the logarithm of the part of the lapse N generated principaly by the star.
const Tenseurget_logn_auto_regu () const
 Returns the regular part of the logarithm of the part of the lapse N generated principaly by the star.
const Tenseurget_logn_auto_div () const
 Returns the divergent part of the logarithm of the part of the lapse N generated principaly by the star.
const Tenseurget_d_logn_auto_div () const
 Returns the gradient of logn_auto_div.
const Tenseurget_beta_auto () const
 Returns the logarithm of the part of the product AN generated principaly by the star.
const Tenseurget_nnn () const
 Returns the total lapse function N.
const Tenseurget_shift () const
 Returns the total shift vector $N^i$.
const Tenseurget_a_car () const
 Returns the total conformal factor $A^2$.
double ray_eq () const
 Coordinate radius at $\phi=0$, $\theta=\pi/2$ [r_unit].
double ray_eq (int kk) const
 Coordinate radius at $\phi=2k\pi/np$, $\theta=\pi/2$ [r_unit].
double ray_eq_pis2 () const
 Coordinate radius at $\phi=\pi/2$, $\theta=\pi/2$ [r_unit].
double ray_eq_pi () const
 Coordinate radius at $\phi=\pi$, $\theta=\pi/2$ [r_unit].
double ray_eq_3pis2 () const
 Coordinate radius at $\phi=3\pi/2$, $\theta=\pi/2$ [r_unit].
double ray_pole () const
 Coordinate radius at $\theta=0$ [r_unit].
const Tblxi_surf () const
 Description of the stellar surface: returns a 2-D Tbl containing the values of the radial coordinate $\xi$ on the surface at the collocation points in $(\theta', \phi')$.

Static Public Member Functions

static double lambda_grv2 (const Cmp &sou_m, const Cmp &sou_q)
 Computes the coefficient $\lambda$ which ensures that the GRV2 virial identity is satisfied.

Protected Member Functions

virtual void del_deriv () const
 Deletes all the derived quantities.
virtual void set_der_0x0 () const
 Sets to 0x0 all the pointers on derived quantities.
virtual void del_hydro_euler ()
 Sets to ETATNONDEF (undefined state) the hydrodynamical quantities relative to the Eulerian observer.

Protected Attributes

const Eos_bifluideos
 Equation of state for two-fluids model.
double omega2
 Rotation angular velocity for fluid 2 ([f_unit] ).
Tenseur ent2
 Log-enthalpy for the second fluid.
Tenseur nbar2
 Baryon density in the fluid frame, for fluid 2.
Tenseur sphph_euler
 The component $S^\varphi_\varphi$ of the stress tensor ${S^i}_j$.
Tenseur j_euler
 Total angular momentum (flat-space!) 3-vector $J_\mathrm{euler}$, which is related to $J^i$ of the "3+1" decomposition, but expressed in a flat-space triad.
Tenseur enerps_euler
 the combination $E+S_i^i$: useful because in the Newtonian limit $\rightarrow \rho$.
Tenseur uuu2
 Norm of the (fluid no.2) 3-velocity with respect to the eulerian observer.
Tenseur gam_euler2
 Lorentz factor between the fluid 2 and Eulerian observers.
Tenseur delta_car
 The "relative velocity" (squared) $\Delta^2$ of the two fluids.
double * p_ray_eq2
 Coordinate radius at $\phi=0$, $\theta=\pi/2$.
double * p_ray_eq2_pis2
 Coordinate radius at $\phi=\pi/2$, $\theta=\pi/2$.
double * p_ray_eq2_pi
 Coordinate radius at $\phi=\pi$, $\theta=\pi/2$.
double * p_ray_pole2
 Coordinate radius at $\theta=0$.
Itblp_l_surf2
 Description of the surface of fluid 2: 2-D Itbl containing the values of the domain index l on the surface at the collocation points in $(\theta', \phi')$.
Tblp_xi_surf2
 Description of the surface of fluid 2: 2-D Tbl containing the values of the radial coordinate $\xi$ on the surface at the collocation points in $(\theta', \phi')$.
double * p_r_circ2
 Circumferential radius of fluid no.2.
double * p_aplat2
 Flatening r_pole/r_eq of fluid no.2.
double * p_mass_b1
 Baryon mass of fluid 1.
double * p_mass_b2
 Baryon mass of fluid 2.
double omega
 Rotation angular velocity ([f_unit] ).
Tenseur bbb
 Metric factor B.
Tenseur b_car
 Square of the metric factor B.
Tenseur nphi
 Metric coefficient $N^\varphi$.
Tenseur tnphi
 Component $\tilde N^\varphi = N^\varphi r\sin\theta$ of the shift vector.
Tenseur uuu
 Norm of u_euler.
Tenseurlogn
 Metric potential $\nu = \ln N$ = logn_auto.
Tenseur nuf
 Part of the Metric potential $\nu = \ln N$ = logn generated by the matter terms.
Tenseur nuq
 Part of the Metric potential $\nu = \ln N$ = logn generated by the quadratic terms.
Tenseurdzeta
 Metric potential $\zeta = \ln(AN)$ = beta_auto.
Tenseur tggg
 Metric potential $\tilde G = (NB-1) r\sin\theta$.
Tenseur w_shift
 Vector $W^i$ used in the decomposition of shift , following Shibata's prescription [Prog.
Tenseur khi_shift
 Scalar $\chi$ used in the decomposition of shift , following Shibata's prescription [Prog.
Tenseur_sym tkij
 Tensor ${\tilde K_{ij}}$ related to the extrinsic curvature tensor by ${\tilde K_{ij}} = B^{-2} K_{ij}$.
Tenseur ak_car
 Scalar $A^2 K_{ij} K^{ij}$.
Cmp ssjm1_nuf
 Effective source at the previous step for the resolution of the Poisson equation for nuf by means of Map_et::poisson .
Cmp ssjm1_nuq
 Effective source at the previous step for the resolution of the Poisson equation for nuq by means of Map_et::poisson .
Cmp ssjm1_dzeta
 Effective source at the previous step for the resolution of the Poisson equation for dzeta .
Cmp ssjm1_tggg
 Effective source at the previous step for the resolution of the Poisson equation for tggg .
Cmp ssjm1_khi
 Effective source at the previous step for the resolution of the Poisson equation for the scalar $\chi$ by means of Map_et::poisson .
Tenseur ssjm1_wshift
 Effective source at the previous step for the resolution of the vector Poisson equation for $W^i$.
double * p_angu_mom
 Angular momentum.
double * p_tsw
 Ratio T/W.
double * p_grv2
 Error on the virial identity GRV2.
double * p_grv3
 Error on the virial identity GRV3.
double * p_r_circ
 Circumferential radius.
double * p_aplat
 Flatening r_pole/r_eq.
double * p_z_eqf
 Forward redshift factor at equator.
double * p_z_eqb
 Backward redshift factor at equator.
double * p_z_pole
 Redshift factor at North pole.
double * p_mom_quad
 Quadrupole moment.
double * p_r_isco
 Circumferential radius of the ISCO.
double * p_f_isco
 Orbital frequency of the ISCO.
double * p_espec_isco
 Specific energy of a particle on the ISCO.
double * p_lspec_isco
 Specific angular momentum of a particle on the ISCO.
double * p_f_eq
 Orbital frequency at the equator.
Mapmp
 Mapping associated with the star.
int nzet
 Number of domains of *mp occupied by the star.
bool relativistic
 Indicator of relativity: true for a relativistic star, false for a Newtonian one.
double unsurc2
 $1/c^2$ : unsurc2=1 for a relativistic star, 0 for a Newtonian one.
int k_div
 Index of regularity of the gravitational potential logn_auto .
Tenseur ent
 Log-enthalpy (relativistic case) or specific enthalpy (Newtonian case).
Tenseur nbar
 Baryon density in the fluid frame.
Tenseur ener
 Total energy density in the fluid frame.
Tenseur press
 Fluid pressure.
Tenseur ener_euler
 Total energy density in the Eulerian frame.
Tenseur s_euler
 Trace of the stress tensor in the Eulerian frame.
Tenseur gam_euler
 Lorentz factor between the fluid and Eulerian observers.
Tenseur u_euler
 Fluid 3-velocity with respect to the Eulerian observer.
Tenseur logn_auto
 Total of the logarithm of the part of the lapse N generated principaly by the star.
Tenseur logn_auto_regu
 Regular part of the logarithm of the part of the lapse N generated principaly by the star.
Tenseur logn_auto_div
 Divergent part (if k_div!=0 ) of the logarithm of the part of the lapse N generated principaly by the star.
Tenseur d_logn_auto_div
 Gradient of logn_auto_div (if k_div!=0 ).
Tenseur beta_auto
 Logarithm of the part of the product AN generated principaly by by the star.
Tenseur nnn
 Total lapse function.
Tenseur shift
 Total shift vector.
Tenseur a_car
 Total conformal factor $A^2$.
double * p_ray_eq
 Coordinate radius at $\phi=0$, $\theta=\pi/2$.
double * p_ray_eq_pis2
 Coordinate radius at $\phi=\pi/2$, $\theta=\pi/2$.
double * p_ray_eq_pi
 Coordinate radius at $\phi=\pi$, $\theta=\pi/2$.
double * p_ray_eq_3pis2
 Coordinate radius at $\phi=3\pi/2$, $\theta=\pi/2$.
double * p_ray_pole
 Coordinate radius at $\theta=0$.
Itblp_l_surf
 Description of the stellar surface: 2-D Itbl containing the values of the domain index l on the surface at the collocation points in $(\theta', \phi')$.
Tblp_xi_surf
 Description of the stellar surface: 2-D Tbl containing the values of the radial coordinate $\xi$ on the surface at the collocation points in $(\theta', \phi')$.
double * p_mass_b
 Baryon mass.
double * p_mass_g
 Gravitational mass.

Friends

ostream & operator<< (ostream &, const Etoile &)
 Display.

Detailed Description

Class for two-fluid rotating relativistic stars.

()

This is a child class of Etoile_rot , with the same metric and overloaded member functions.

There are two number-density fields nbar and nbar2 (and 2 log-enthalpies, see class Eos_bifluid ), as well as two velocity fields, with phi-components (with respect to the Eulerian observer) uuu and uuu2 .

Fluid 1 can be considered to correspond to the (superfluid) neutrons, whereas fluid 2 would consist of the protons (and electrons) The quantity u_euler of the class Etoile is not used in this class! Only the "3+1" components of ${T^\mu}_\nu$ should be used outside of hydro_euler() , namely s_euler, sphph_euler, j_euler and ener_euler.

Definition at line 131 of file et_rot_bifluid.h.


Constructor & Destructor Documentation

Et_rot_bifluid::Et_rot_bifluid ( Map mp_i,
int  nzet_i,
bool  relat,
const Eos_bifluid eos_i 
)
Et_rot_bifluid::Et_rot_bifluid ( const Et_rot_bifluid et  ) 

Copy constructor.

Definition at line 146 of file et_rot_bifluid.C.

References omega2, and set_der_0x0().

Et_rot_bifluid::Et_rot_bifluid ( Map mp_i,
const Eos_bifluid eos_i,
FILE *  fich 
)

Constructor from a file (see sauve(FILE*) ) Works only for relativistic stars.

This has to be improved....

Definition at line 167 of file et_rot_bifluid.C.

References delta_car, ent2, fread_be(), Etoile::mp, omega2, set_der_0x0(), and uuu2.

Et_rot_bifluid::~Et_rot_bifluid (  )  [virtual]

Destructor.

Definition at line 207 of file et_rot_bifluid.C.

References del_deriv().


Member Function Documentation

double Et_rot_bifluid::angu_mom (  )  const [virtual]
double Etoile_rot::aplat (  )  const [virtual, inherited]

Flatening r_pole/r_eq.

Definition at line 411 of file et_rot_global.C.

References Etoile_rot::p_aplat, Etoile::ray_eq(), and Etoile::ray_pole().

double Et_rot_bifluid::aplat2 (  )  const [virtual]

Flatening r_pole/r_eq for fluid 2.

Definition at line 360 of file et_bfrot_global.C.

References p_aplat2, ray_eq2(), and ray_pole2().

void Et_rot_bifluid::del_deriv (  )  const [protected, virtual]

Deletes all the derived quantities.

Reimplemented from Etoile_rot.

Definition at line 217 of file et_rot_bifluid.C.

References p_aplat2, p_l_surf2, p_mass_b1, p_mass_b2, p_r_circ2, p_ray_eq2, p_ray_eq2_pi, p_ray_eq2_pis2, p_ray_pole2, p_xi_surf2, and set_der_0x0().

void Et_rot_bifluid::del_hydro_euler (  )  [protected, virtual]

Sets to ETATNONDEF (undefined state) the hydrodynamical quantities relative to the Eulerian observer.

Reimplemented from Etoile_rot.

Definition at line 254 of file et_rot_bifluid.C.

References del_deriv(), delta_car, enerps_euler, gam_euler2, j_euler, Tenseur::set_etat_nondef(), sphph_euler, and uuu2.

void Etoile_rot::display_poly ( ostream &  ost  )  const [virtual, inherited]
void Et_rot_bifluid::equation_of_state (  )  [virtual]
void Etoile::equil_spher_falloff ( double  ent_c,
double  precis = 1.e-14 
) [virtual, inherited]

Computes a spherical static configuration with the outer boundary condition at a finite radius.

Parameters:
ent_c [input] central value of the enthalpy
precis [input] threshold in the relative difference between the enthalpy fields of two consecutive steps to stop the iterative procedure (default value: 1.e-14)

Definition at line 53 of file etoile_eqsph_falloff.C.

References Etoile::a_car, Tenseur::annule(), Etoile::beta_auto, diffrel(), Cmp::dsdr(), Map_af::dsdr(), Etoile::ener, Etoile::ener_euler, Etoile::ent, Etoile::equation_of_state(), exp(), Etoile::gam_euler, Map::get_mg(), Mg3d::get_nr(), Mg3d::get_nt(), Mg3d::get_nzone(), Map_af::homothetie(), Etoile::logn_auto, Etoile::mass_b(), Etoile::mass_g(), Etoile::mp, Etoile::nbar, Etoile::nnn, norme(), Etoile::nzet, Etoile::press, Etoile::relativistic, Etoile::s_euler, Tenseur::set(), Tenseur::set_etat_qcq(), Tenseur::set_std_base(), Etoile::shift, sqrt(), Etoile::u_euler, Etoile::unsurc2, and Map::val_r().

void Etoile::equil_spher_regular ( double  ent_c,
double  precis = 1.e-14 
) [inherited]
void Et_rot_bifluid::equil_spher_regular ( double  ent_c,
double  ent_c2,
double  precis = 1.e-14 
)

Computes a spherical static configuration.

The sources for Poisson equations are regularized by extracting analytical diverging parts.

Parameters:
ent_c [input] central value of the enthalpy 1
ent_c2 [input] central value of the enthalpy 2
precis [input] threshold in the relative difference between the enthalpy fields of two consecutive steps to stop the iterative procedure (default value: 1.e-14)
void Etoile_rot::equilibrium ( double  ent_c,
double  omega0,
double  fact_omega,
int  nzadapt,
const Tbl ent_limit,
const Itbl icontrol,
const Tbl control,
double  mbar_wanted,
double  aexp_mass,
Tbl diff,
Param = 0x0 
) [virtual, inherited]

Computes an equilibrium configuration.

Parameters:
ent_c [input] Central enthalpy
omega0 [input] Requested angular velocity (if fact_omega=1. )
fact_omega [input] 1.01 = search for the Keplerian frequency, 1. = otherwise.
nzadapt [input] Number of (inner) domains where the mapping adaptation to an iso-enthalpy surface should be performed
ent_limit [input] 1-D Tbl of dimension nzet which defines the enthalpy at the outer boundary of each domain
icontrol [input] Set of integer parameters (stored as a 1-D Itbl of size 8) to control the iteration:

  • icontrol(0) = mer_max : maximum number of steps
  • icontrol(1) = mer_rot : step at which the rotation is switched on
  • icontrol(2) = mer_change_omega : step at which the rotation velocity is changed to reach the final one
  • icontrol(3) = mer_fix_omega : step at which the final rotation velocity must have been reached
  • icontrol(4) = mer_mass : the absolute value of mer_mass is the step from which the baryon mass is forced to converge, by varying the central enthalpy (mer_mass>0 ) or the angular velocity (mer_mass<0 )
  • icontrol(5) = mermax_poisson : maximum number of steps in Map_et::poisson
  • icontrol(6) = mer_triax : step at which the 3-D perturbation is switched on
  • icontrol(7) = delta_mer_kep : number of steps after mer_fix_omega when omega starts to be increased by fact_omega to search for the Keplerian velocity
control [input] Set of parameters (stored as a 1-D Tbl of size 7) to control the iteration:

  • control(0) = precis : threshold on the enthalpy relative change for ending the computation
  • control(1) = omega_ini : initial angular velocity, switched on only if mer_rot<0 , otherwise 0 is used
  • control(2) = relax : relaxation factor in the main iteration
  • control(3) = relax_poisson : relaxation factor in Map_et::poisson
  • control(4) = thres_adapt : threshold on dH/dr for freezing the adaptation of the mapping
  • control(5) = ampli_triax : relative amplitude of the 3-D perturbation
  • control(6) = precis_adapt : precision for Map_et::adapt
mbar_wanted [input] Requested baryon mass (effective only if mer_mass > mer_max )
aexp_mass [input] Exponent for the increase factor of the central enthalpy to converge to the requested baryon mass
diff [output] 1-D Tbl of size 7 for the storage of some error indicators :

  • diff(0) : Relative change in the enthalpy field between two successive steps
  • diff(1) : Relative error in the resolution of the Poisson equation for nuf
  • diff(2) : Relative error in the resolution of the Poisson equation for nuq
  • diff(3) : Relative error in the resolution of the Poisson equation for dzeta
  • diff(4) : Relative error in the resolution of the Poisson equation for tggg
  • diff(5) : Relative error in the resolution of the equation for shift (x comp.)
  • diff(6) : Relative error in the resolution of the equation for shift (y comp.)

Reimplemented in Et_rot_diff.

Definition at line 143 of file et_rot_equilibrium.C.

References Etoile::a_car, abs(), Map::adapt(), Param::add_cmp_mod(), Param::add_double(), Param::add_double_mod(), Param::add_int(), Param::add_int_mod(), Param::add_tbl(), Param::add_tenseur_mod(), Etoile_rot::ak_car, Cmp::annule(), Etoile_rot::bbb, Valeur::c_cf, Tenseur::change_triad(), Map::cmp_zero(), Valeur::coef(), cos(), diffrel(), Etoile_rot::dzeta, Etoile::ener_euler, Etoile::ent, Etoile::equation_of_state(), Etoile_rot::fait_nphi(), flat_scalar_prod(), Etoile::gam_euler, Map::get_bvect_cart(), Tenseur::get_etat(), Map::get_mg(), Mg3d::get_np(), Mg3d::get_nr(), Mg3d::get_nt(), Mg3d::get_nzone(), Mg3d::get_type_t(), Tenseur::gradient_spher(), Etoile_rot::grv2(), Map_et::homothetie(), Etoile_rot::hydro_euler(), Etoile_rot::khi_shift, log(), log10(), Etoile_rot::logn, Etoile_rot::mass_b(), Etoile_rot::mass_g(), Etoile::mp, Cmp::mult_rsint(), Etoile::nbar, Etoile::nnn, Etoile_rot::nphi, Etoile_rot::nuf, Etoile_rot::nuq, Etoile::nzet, Etoile_rot::omega, Etoile_rot::partial_display(), Map::phi, Map::poisson2d(), pow(), Etoile::press, Etoile::ray_eq(), Etoile::ray_pole(), Map::reevaluate(), Etoile::relativistic, Etoile::s_euler, Tenseur::set(), Tbl::set(), Tenseur::set_etat_qcq(), Tbl::set_etat_qcq(), Tenseur::set_std_base(), Etoile::shift, Map::sint, sqrt(), Etoile_rot::ssjm1_khi, Etoile_rot::ssjm1_nuf, Etoile_rot::ssjm1_nuq, Etoile_rot::ssjm1_tggg, Etoile_rot::ssjm1_wshift, Cmp::std_base_scal(), Etoile_rot::tggg, Etoile_rot::tkij, Etoile::u_euler, Etoile_rot::update_metric(), Etoile_rot::uuu, Cmp::va, and Etoile_rot::w_shift.

void Et_rot_bifluid::equilibrium_bi ( double  ent_c,
double  ent_c2,
double  omega0,
double  omega20,
const Tbl ent_limit,
const Tbl ent2_limit,
const Itbl icontrol,
const Tbl control,
Tbl diff,
int  mer_mass,
double  mbar1_wanted,
double  mbar2_wanted,
double  aexp_mass 
)

Computes an equilibrium configuration.

Parameters:
ent_c [input] Central enthalpy for fluid 1
ent_c2 [input] Central enthalpy for fluid 2
omega0 [input] Requested angular velocity for fluid 1
omega20 [input] Requested angular velocity for fluid 2
ent_limit [input] 1-D Tbl of dimension nzet which defines the enthalpy for fluid 1 at the outer boundary of each domain
ent2_limit [input] 1-D Tbl of dimension nzet which defines the enthalpy for fluid 2 at the outer boundary of each domain
icontrol [input] Set of integer parameters (stored as a 1-D Itbl of size 5) to control the iteration:

  • icontrol(0) = mer_max : maximum number of steps
  • icontrol(1) = mer_rot : step at which the rotation is switched on
  • icontrol(2) = mer_change_omega : step at which the rotation velocity is changed to reach the final one
  • icontrol(3) = mer_fix_omega : step at which the final rotation velocity must have been reached
  • icontrol(4) = mermax_poisson : maximum number of steps in Map_et::poisson
control [input] Set of parameters (stored as a 1-D Tbl of size 5) to control the iteration:

  • control(0) = precis : threshold on the enthalpy relative change for ending the computation
  • control(1) = omega_ini : initial angular velocity, switched on only if mer_rot < 0 , otherwise 0 is used
  • control(2) = omega2_ini : initial angular velocity, switched on only if mer_rot < 0 , otherwise 0 is used
  • control(3) = relax : relaxation factor in the main iteration
  • control(4) = relax_poisson : relaxation factor in Map_et::poisson
diff [output] 1-D Tbl of size 8 for the storage of some error indicators :

  • diff(0) : Relative change in the enthalpy field 1 between two successive steps
  • diff(1) : Relative change in the enthalpy field 2 between two successive steps
  • diff(2) : Relative error in the resolution of the Poisson equation for nuf
  • diff(3) : Relative error in the resolution of the Poisson equation for nuq
  • diff(4) : Relative error in the resolution of the Poisson equation for dzeta
  • diff(5) : Relative error in the resolution of the Poisson equation for tggg
  • diff(6) : Relative error in the resolution of the equation for shift (x comp.)
  • diff(7) : Relative error in the resolution of the equation for shift (y comp.)

Definition at line 127 of file et_bfrot_equilibre.C.

References Map_et::adapt(), Param::add_cmp_mod(), Param::add_double(), Param::add_double_mod(), Param::add_int(), Param::add_int_mod(), Param::add_tbl(), Param::add_tenseur_mod(), Valeur::c_cf, Tenseur::change_triad(), Valeur::coef(), cos(), diffrel(), flat_scalar_prod(), Eos_bf_poly::get_beta(), Tenseur::get_etat(), Eos_bf_poly::get_kap1(), Eos_bf_poly::get_kap2(), Eos_bf_poly::get_kap3(), Mg3d::get_np(), Mg3d::get_nr(), Mg3d::get_nt(), Mg3d::get_nzone(), Mg3d::get_type_t(), Tenseur::gradient_spher(), Map_et::homothetie(), log(), log10(), pow(), Cmp::set(), Tenseur::set(), Tbl::set(), Tbl::set_etat_qcq(), Tenseur::set_std_base(), and sqrt().

void Etoile::equilibrium_spher ( double  ent_c,
double  precis = 1.e-14,
const Tbl ent_limit = 0x0 
) [virtual, inherited]

Computes a spherical static configuration.

Parameters:
ent_c [input] central value of the enthalpy
precis [input] threshold in the relative difference between the enthalpy fields of two consecutive steps to stop the iterative procedure (default value: 1.e-14)
ent_limit [input] : array of enthalpy values to be set at the boundaries between the domains; if set to 0x0 (default), the initial values will be kept.

Definition at line 83 of file etoile_equil_spher.C.

References Etoile::a_car, Map_et::adapt(), Param::add_double(), Param::add_int(), Param::add_int_mod(), Param::add_tbl(), Tenseur::annule(), Etoile::beta_auto, diffrel(), Cmp::dsdr(), Map_af::dsdr(), Etoile::ener, Etoile::ener_euler, Etoile::ent, Etoile::equation_of_state(), exp(), Etoile::gam_euler, Map_et::get_alpha(), Map_af::get_alpha(), Map_et::get_beta(), Map_af::get_beta(), Etoile::get_ent(), Map::get_mg(), Mg3d::get_nr(), Mg3d::get_nt(), Mg3d::get_nzone(), Etoile::get_press(), Map_af::homothetie(), Etoile::logn_auto, Etoile::mass_b(), Etoile::mass_g(), Etoile::mp, Etoile::nbar, Etoile::nnn, norme(), Etoile::nzet, Map_af::poisson(), Etoile::press, Etoile::relativistic, Etoile::s_euler, Tenseur::set(), Map_af::set_alpha(), Map_af::set_beta(), Tenseur::set_etat_qcq(), Tenseur::set_std_base(), Etoile::shift, sqrt(), Etoile::u_euler, Etoile::unsurc2, and Map::val_r().

void Et_rot_bifluid::equilibrium_spher_bi ( double  ent_c,
double  ent_c2,
double  precis = 1.e-14 
)

Computes a spherical static configuration.

Parameters:
ent_c [input] central value of the enthalpy 1
ent_c2 [input] central value of the enthalpy 2
precis [input] threshold in the relative difference between the enthalpy fields of two consecutive steps to stop the iterative procedure (default value: 1.e-14)
double Etoile_rot::espec_isco (  )  const [virtual, inherited]

Energy of a particle on the ISCO.

Definition at line 297 of file et_rot_isco.C.

References Etoile_rot::p_espec_isco, and Etoile_rot::r_isco().

void Etoile_rot::extrinsic_curvature (  )  [inherited]
double Etoile_rot::f_eccentric ( double  ecc,
double  periast,
ostream *  ost = 0x0 
) const [virtual, inherited]

Computation of frequency of eccentric orbits.

Parameters:
ecc eccentricity of the orbit
periasrt periastron of the orbit
ost output stream to give details of the computation; if set to 0x0 [default value], no details will be given.
Returns:
orbital frequency

Definition at line 74 of file et_rot_f_eccentric.C.

References Param::add_cmp(), Param::add_int(), Cmp::annule(), Etoile_rot::bbb, Cmp::dsdr(), Map::get_mg(), Mg3d::get_nzone(), Etoile::mp, Etoile::nnn, Etoile_rot::nphi, Etoile::nzet, Etoile_rot::p_f_isco, Etoile_rot::p_r_isco, Map::r, Etoile::ray_eq(), sqrt(), Cmp::std_base_scal(), Cmp::va, Valeur::val_point(), and Map::val_r().

double Etoile_rot::f_eq (  )  const [virtual, inherited]

Orbital frequency at the equator.

Definition at line 315 of file et_rot_isco.C.

References Etoile_rot::p_f_eq, and Etoile_rot::r_isco().

double Etoile_rot::f_isco (  )  const [virtual, inherited]

Orbital frequency at the innermost stable circular orbit (ISCO).

Definition at line 263 of file et_rot_isco.C.

References Etoile_rot::p_f_isco, and Etoile_rot::r_isco().

void Etoile_rot::fait_nphi (  )  [inherited]

Computes tnphi and nphi from the Cartesian components of the shift, stored in shift .

Definition at line 756 of file etoile_rot.C.

References Map::comp_p_from_cartesian(), Tenseur::get_etat(), Etoile::mp, Etoile_rot::nphi, Tenseur::set(), Tenseur::set_etat_qcq(), Etoile::shift, and Etoile_rot::tnphi.

void Etoile_rot::fait_shift (  )  [inherited]

Computes shift from w_shift and khi_shift according to Shibata's prescription [Prog.

Theor. Phys. 101 , 1199 (1999)] :

\[ N^i = {7\over 8} W^i - {1\over 8} \left(\nabla^i\chi+\nabla^iW^kx_k\right) \]

Definition at line 723 of file etoile_rot.C.

References Tenseur::dec2_dzpuis(), Tenseur::dec_dzpuis(), Tenseur::get_etat(), Tenseur::get_triad(), Tenseur::gradient(), Etoile_rot::khi_shift, Tenseur::set(), Tenseur::set_etat_qcq(), Tenseur::set_triad(), Etoile::shift, skxk(), and Etoile_rot::w_shift.

const Tenseur& Etoile::get_a_car (  )  const [inline, inherited]

Returns the total conformal factor $A^2$.

Definition at line 718 of file etoile.h.

References Etoile::a_car.

const Tenseur& Etoile_rot::get_ak_car (  )  const [inline, inherited]

Returns the scalar $A^2 K_{ij} K^{ij}$.

For axisymmetric stars, this quantity is related to the derivatives of $N^\varphi$ by

\[ A^2 K_{ij} K^{ij} = {B^2 \over 2 N^2} \, r^2\sin^2\theta \, \left[ \left( {\partial N^\varphi \over \partial r} \right) ^2 + {1\over r^2} \left( {\partial N^\varphi \over \partial \theta} \right) ^2 \right] \ . \]

In particular it is related to the quantities $k_1$ and $k_2$ introduced by Eqs.~(3.7) and (3.8) of Bonazzola et al. Astron. Astrophys. 278 , 421 (1993) by

\[ A^2 K_{ij} K^{ij} = 2 A^2 (k_1^2 + k_2^2) \ . \]

Definition at line 1782 of file etoile.h.

References Etoile_rot::ak_car.

const Tenseur& Etoile_rot::get_b_car (  )  const [inline, inherited]

Returns the square of the metric factor B.

Definition at line 1698 of file etoile.h.

References Etoile_rot::b_car.

const Tenseur& Etoile_rot::get_bbb (  )  const [inline, inherited]

Returns the metric factor B.

Definition at line 1695 of file etoile.h.

References Etoile_rot::bbb.

const Tenseur& Etoile::get_beta_auto (  )  const [inline, inherited]

Returns the logarithm of the part of the product AN generated principaly by the star.

Definition at line 709 of file etoile.h.

References Etoile::beta_auto.

const Tenseur& Etoile::get_d_logn_auto_div (  )  const [inline, inherited]

Returns the gradient of logn_auto_div.

Definition at line 704 of file etoile.h.

References Etoile::d_logn_auto_div.

const Tenseur& Et_rot_bifluid::get_delta_car (  )  const [inline]

Returns the "relative velocity" (squared) $\Delta^2$ of the two fluids.

Definition at line 296 of file et_rot_bifluid.h.

References delta_car.

const Tenseur& Etoile_rot::get_dzeta (  )  const [inline, inherited]

Returns the Metric potential $\zeta = \ln(AN)$ = beta_auto.

Definition at line 1725 of file etoile.h.

References Etoile_rot::dzeta.

const Tenseur& Etoile::get_ener (  )  const [inline, inherited]

Returns the proper total energy density.

Definition at line 664 of file etoile.h.

References Etoile::ener.

const Tenseur& Etoile::get_ener_euler (  )  const [inline, inherited]

Returns the total energy density with respect to the Eulerian observer.

Definition at line 670 of file etoile.h.

References Etoile::ener_euler.

const Tenseur& Etoile::get_ent (  )  const [inline, inherited]

Returns the enthalpy field.

Definition at line 658 of file etoile.h.

References Etoile::ent.

const Tenseur& Et_rot_bifluid::get_ent2 (  )  const [inline]

Returns the enthalpy field for fluid 2.

Definition at line 290 of file et_rot_bifluid.h.

References ent2.

const Eos_bifluid& Et_rot_bifluid::get_eos (  )  const [inline]

Returns the equation of state.

Reimplemented from Etoile.

Definition at line 287 of file et_rot_bifluid.h.

References eos.

const Tenseur& Etoile::get_gam_euler (  )  const [inline, inherited]

Returns the Lorentz factor between the fluid and Eulerian observers.

Definition at line 676 of file etoile.h.

References Etoile::gam_euler.

const Tenseur& Et_rot_bifluid::get_gam_euler2 (  )  const [inline]

Returns the Lorentz factor between the fluid 2 and Eulerian observers.

Definition at line 299 of file et_rot_bifluid.h.

References gam_euler2.

const Tenseur& Etoile_rot::get_khi_shift (  )  const [inline, inherited]

Returns the scalar $\chi$ used in the decomposition of shift following Shibata's prescription [Prog.

Theor. Phys. 101 , 1199 (1999)] :

\[ N^i = {7\over 8} W^i - {1\over 8} \left(\nabla^i\chi+\nabla^iW^kx_k\right) \]

NB: w_shift contains the components of $W^i$ with respect to the Cartesian triad associated with the mapping mp .

Definition at line 1756 of file etoile.h.

References Etoile_rot::khi_shift.

const Tenseur& Etoile_rot::get_logn (  )  const [inline, inherited]

Returns the metric potential $\nu = \ln N$ = logn_auto.

Definition at line 1712 of file etoile.h.

References Etoile_rot::logn.

const Tenseur& Etoile::get_logn_auto (  )  const [inline, inherited]

Returns the logarithm of the part of the lapse N generated principaly by the star.

In the Newtonian case, this is the Newtonian gravitational potential (in units of $c^2$).

Definition at line 686 of file etoile.h.

References Etoile::logn_auto.

const Tenseur& Etoile::get_logn_auto_div (  )  const [inline, inherited]

Returns the divergent part of the logarithm of the part of the lapse N generated principaly by the star.

In the Newtonian case, this is the diverging part of the Newtonian gravitational potential (in units of $c^2$).

Definition at line 700 of file etoile.h.

References Etoile::logn_auto_div.

const Tenseur& Etoile::get_logn_auto_regu (  )  const [inline, inherited]

Returns the regular part of the logarithm of the part of the lapse N generated principaly by the star.

In the Newtonian case, this is the Newtonian gravitational potential (in units of $c^2$).

Definition at line 693 of file etoile.h.

References Etoile::logn_auto_regu.

const Map& Etoile::get_mp (  )  const [inline, inherited]

Returns the mapping.

Definition at line 644 of file etoile.h.

References Etoile::mp.

const Tenseur& Etoile::get_nbar (  )  const [inline, inherited]

Returns the proper baryon density.

Definition at line 661 of file etoile.h.

References Etoile::nbar.

const Tenseur& Et_rot_bifluid::get_nbar2 (  )  const [inline]

Returns the proper baryon density for fluid 2.

Definition at line 293 of file et_rot_bifluid.h.

References nbar2.

const Tenseur& Etoile::get_nnn (  )  const [inline, inherited]

Returns the total lapse function N.

Definition at line 712 of file etoile.h.

References Etoile::nnn.

const Tenseur& Etoile_rot::get_nphi (  )  const [inline, inherited]

Returns the metric coefficient $N^\varphi$.

Definition at line 1701 of file etoile.h.

References Etoile_rot::nphi.

const Tenseur& Etoile_rot::get_nuf (  )  const [inline, inherited]

Returns the part of the Metric potential $\nu = \ln N$ = logn generated by the matter terms.

Definition at line 1717 of file etoile.h.

References Etoile_rot::nuf.

const Tenseur& Etoile_rot::get_nuq (  )  const [inline, inherited]

Returns the Part of the Metric potential $\nu = \ln N$ = logn generated by the quadratic terms.

Definition at line 1722 of file etoile.h.

References Etoile_rot::nuq.

int Etoile::get_nzet (  )  const [inline, inherited]

Returns the number of domains occupied by the star.

Definition at line 647 of file etoile.h.

References Etoile::nzet.

double Et_rot_bifluid::get_omega2 (  )  const [inline]

Returns the rotation angular velocity of fluid 2([f_unit] ).

Definition at line 302 of file et_rot_bifluid.h.

References omega2.

double Etoile_rot::get_omega_c (  )  const [virtual, inherited]

Returns the central value of the rotation angular velocity ([f_unit] ).

Reimplemented in Et_rot_diff.

Definition at line 655 of file etoile_rot.C.

References Etoile_rot::omega.

const Tenseur& Etoile::get_press (  )  const [inline, inherited]

Returns the fluid pressure.

Definition at line 667 of file etoile.h.

References Etoile::press.

const Tenseur& Etoile::get_s_euler (  )  const [inline, inherited]

Returns the trace of the stress tensor in the Eulerian frame.

Definition at line 673 of file etoile.h.

References Etoile::s_euler.

const Tenseur& Etoile::get_shift (  )  const [inline, inherited]

Returns the total shift vector $N^i$.

Definition at line 715 of file etoile.h.

References Etoile::shift.

const Tenseur& Etoile_rot::get_tggg (  )  const [inline, inherited]

Returns the Metric potential $\tilde G = (NB-1) r\sin\theta$.

Definition at line 1728 of file etoile.h.

References Etoile_rot::tggg.

const Tenseur_sym& Etoile_rot::get_tkij (  )  const [inline, inherited]

Returns the tensor ${\tilde K_{ij}}$ related to the extrinsic curvature tensor by ${\tilde K_{ij}} = B^{-2} K_{ij}$.

tkij contains the Cartesian components of ${\tilde K_{ij}}$.

Definition at line 1763 of file etoile.h.

References Etoile_rot::tkij.

const Tenseur& Etoile_rot::get_tnphi (  )  const [inline, inherited]

Returns the component $\tilde N^\varphi = N^\varphi r\sin\theta$ of the shift vector.

Definition at line 1706 of file etoile.h.

References Etoile_rot::tnphi.

const Tenseur& Etoile::get_u_euler (  )  const [inline, inherited]

Returns the fluid 3-velocity with respect to the Eulerian observer.

Definition at line 679 of file etoile.h.

References Etoile::u_euler.

const Tenseur& Etoile_rot::get_uuu (  )  const [inline, inherited]

Returns the norm of u_euler.

Definition at line 1709 of file etoile.h.

References Etoile_rot::uuu.

const Tenseur& Et_rot_bifluid::get_uuu2 (  )  const [inline]

Returns the norm of the fluid 2 3-velocity with respect to the eulerian frame.

Definition at line 305 of file et_rot_bifluid.h.

References uuu2.

const Tenseur& Etoile_rot::get_w_shift (  )  const [inline, inherited]

Returns the vector $W^i$ used in the decomposition of shift , following Shibata's prescription [Prog.

Theor. Phys. 101 , 1199 (1999)] :

\[ N^i = {7\over 8} W^i - {1\over 8} \left(\nabla^i\chi+\nabla^iW^kx_k\right) \]

NB: w_shift contains the components of $W^i$ with respect to the Cartesian triad associated with the mapping mp .

Definition at line 1742 of file etoile.h.

References Etoile_rot::w_shift.

double Et_rot_bifluid::grv2 (  )  const [virtual]

Error on the virial identity GRV2.

Given by the integral Eq. (4.6) in [Bonazzola, Gougoulhon, Salgado, Marck, A&A 278 , 421 (1993)].

Reimplemented from Etoile_rot.

Definition at line 213 of file et_bfrot_global.C.

References Etoile::a_car, Etoile_rot::ak_car, flat_scalar_prod(), Tenseur::gradient_spher(), Etoile_rot::lambda_grv2(), Etoile_rot::logn, Etoile::mp, Etoile_rot::p_grv2, and sphph_euler.

double Et_rot_bifluid::grv3 ( ostream *  ost = 0x0  )  const [virtual]

Error on the virial identity GRV3.

The error is computed as the integral defined by Eq. (43) of [Gourgoulhon and Bonazzola, Class. Quantum Grav. 11 , 443 (1994)] divided by the integral of the matter terms.

Parameters:
ost output stream to give details of the computation; if set to 0x0 [default value], no details will be given.

Reimplemented from Etoile_rot.

Definition at line 238 of file et_bfrot_global.C.

References Etoile::a_car, Etoile_rot::ak_car, Etoile_rot::bbb, Etoile_rot::dzeta, flat_scalar_prod(), Cmp::get_dzpuis(), Cmp::get_etat(), Tenseur::gradient_spher(), log(), Etoile_rot::logn, Etoile::mp, Valeur::mult_ct(), Etoile_rot::p_grv3, Etoile::relativistic, Etoile::s_euler, Cmp::set_dzpuis(), Tenseur::set_std_base(), Valeur::ssint(), Cmp::std_base_scal(), Valeur::sx(), Cmp::va, and Map_radial::xsr.

void Et_rot_bifluid::hydro_euler (  )  [virtual]

Computes the hydrodynamical quantities relative to the Eulerian observer from those in the fluid frame.

The calculation is performed starting from the quantities ent , ent2 , ener , press , and a_car , which are supposed to be up to date. From these, the following fields are updated: delta_car , gam_euler , gam_euler2 , ener_euler , s_euler , sphph_euler and j_euler .

Reimplemented from Etoile_rot.

Definition at line 558 of file et_rot_bifluid.C.

References Tenseur::annule(), Etoile_rot::bbb, Tenseur::change_triad(), del_deriv(), delta_car, Etoile::ener_euler, enerps_euler, Etoile::ent, eos, Etoile::gam_euler, gam_euler2, Map::get_bvect_cart(), Map::get_bvect_spher(), Tenseur::get_etat(), Eos_bifluid::get_Knn(), Eos_bifluid::get_Knp(), Eos_bifluid::get_Kpp(), Eos_bifluid::get_m1(), Eos_bifluid::get_m2(), Map::get_mg(), Mg3d::get_nr(), Mg3d::get_nt(), Mg3d::get_nzone(), j_euler, Etoile::mp, Etoile::nbar, nbar2, Etoile::nnn, Etoile_rot::nphi, Etoile::nzet, Etoile_rot::omega, omega2, Etoile::press, Etoile::relativistic, Etoile::s_euler, Tenseur::set(), Tenseur::set_etat_nondef(), Tenseur::set_etat_qcq(), Tenseur::set_std_base(), Tenseur::set_triad(), sphph_euler, sqrt(), Etoile::u_euler, Etoile::unsurc2, Etoile_rot::uuu, and uuu2.

bool Etoile::is_relativistic (  )  const [inline, inherited]

Returns true for a relativistic star, false for a Newtonian one.

Definition at line 652 of file etoile.h.

References Etoile::relativistic.

const Itbl & Et_rot_bifluid::l_surf (  )  const [virtual]

Description of the surface of fluid 1: returns a 2-D Itbl containing the values of the domain index l on the surface at the collocation points in $(\theta', \phi')$.

This surface is defined as the location where the density 1 (member nbar ) vanishes.

Reimplemented from Etoile_rot.

Definition at line 447 of file et_bfrot_global.C.

References Cmp::annule(), Map::get_mg(), Mg3d::get_np(), Mg3d::get_nt(), Etoile::mp, Etoile::nbar, Etoile::nzet, Etoile::p_l_surf, Etoile::p_xi_surf, and Cmp::va.

const Itbl & Et_rot_bifluid::l_surf2 (  )  const

Description of the surface of fluid 2: returns a 2-D Itbl containing the values of the domain index l on the surface at the collocation points in $(\theta', \phi')$.

This surface is defined as the location where the density 2 (member nbar2 ) vanishes.

Definition at line 480 of file et_bfrot_global.C.

References Cmp::annule(), Map::get_mg(), Mg3d::get_np(), Mg3d::get_nt(), Etoile::mp, nbar2, Etoile::nzet, p_l_surf2, p_xi_surf2, and Cmp::va.

double Etoile_rot::lambda_grv2 ( const Cmp sou_m,
const Cmp sou_q 
) [static, inherited]

Computes the coefficient $\lambda$ which ensures that the GRV2 virial identity is satisfied.

$\lambda$ is the coefficient by which one must multiply the quadratic source term $\sigma_q$ of the 2-D Poisson equation

\[ \Delta_2 u = \sigma_m + \sigma_q \]

in order that the total source does not contain any monopolar term, i.e. in order that

\[ \int_0^{2\pi} \int_0^{+\infty} \sigma(r, \theta) \, r \, dr \, d\theta = 0 \ , \]

where $\sigma = \sigma_m + \sigma_q$. $\lambda$ is computed according to the formula

\[ \lambda = - { \int_0^{2\pi} \int_0^{+\infty} \sigma_m(r, \theta) \, r \, dr \, d\theta \over \int_0^{2\pi} \int_0^{+\infty} \sigma_q(r, \theta) \, r \, dr \, d\theta } \ . \]

Then, by construction, the new source $\sigma' = \sigma_m + \lambda \sigma_q$ has a vanishing monopolar term.

Parameters:
sou_m [input] matter source term $\sigma_m$
sou_q [input] quadratic source term $\sigma_q$
Returns:
value of $\lambda$

Definition at line 75 of file et_rot_lambda_grv2.C.

References Valeur::c, Cmp::check_dzpuis(), Valeur::coef_i(), Map_radial::dxdr, Map_af::get_alpha(), Map_af::get_beta(), Valeur::get_etat(), Cmp::get_etat(), Tbl::get_etat(), Mg3d::get_grille3d(), Map::get_mg(), Cmp::get_mp(), Mg3d::get_np(), Mg3d::get_nr(), Mg3d::get_nt(), Mg3d::get_nzone(), Mg3d::get_type_r(), Map_af::set_alpha(), Map_af::set_beta(), Tbl::t, Mtbl::t, Cmp::va, Map::val_r(), Grille3d::x, and Map_radial::xsr.

double Etoile_rot::lspec_isco (  )  const [virtual, inherited]

Angular momentum of a particle on the ISCO.

Definition at line 280 of file et_rot_isco.C.

References Etoile_rot::p_lspec_isco, and Etoile_rot::r_isco().

double Et_rot_bifluid::mass_b (  )  const [virtual]

Total Baryon mass.

Reimplemented from Etoile_rot.

Definition at line 141 of file et_bfrot_global.C.

References mass_b1(), mass_b2(), and Etoile::p_mass_b.

double Et_rot_bifluid::mass_b1 (  )  const

Baryon mass of fluid 1.

Definition at line 109 of file et_bfrot_global.C.

References Etoile::a_car, Etoile_rot::bbb, eos, Etoile::gam_euler, Tenseur::get_etat(), Eos_bifluid::get_m1(), Etoile::nbar, and p_mass_b1.

double Et_rot_bifluid::mass_b2 (  )  const

Baryon mass of fluid 2.

Definition at line 125 of file et_bfrot_global.C.

References Etoile::a_car, Etoile_rot::bbb, eos, gam_euler2, Tenseur::get_etat(), Eos_bifluid::get_m2(), nbar2, and p_mass_b2.

double Et_rot_bifluid::mass_g (  )  const [virtual]
double Et_rot_bifluid::mom_quad (  )  const [virtual]

Quadrupole moment.

The quadrupole moment Q is defined according to Eq. (7) of [Salgado, Bonazzola, Gourgoulhon and Haensel, Astron. Astrophys. 291 , 155 (1994)]. At the Newtonian limit it is related to the component ${\bar I}_{zz}$ of the MTW (1973) reduced quadrupole moment ${\bar I}_{ij}$ by: $Q = -3/2 {\bar I}_{zz}$. Note that Q is the negative of the quadrupole moment defined by Laarakkers and Poisson, Astrophys. J. 512 , 282 (1999).

Reimplemented from Etoile_rot.

Definition at line 378 of file et_bfrot_global.C.

References Etoile::a_car, Etoile_rot::ak_car, Etoile_rot::bbb, Cmp::check_dzpuis(), enerps_euler, flat_scalar_prod(), Cmp::get_etat(), Tenseur::gradient_spher(), Cmp::inc2_dzpuis(), log(), Etoile_rot::logn, Etoile::mp, Valeur::mult_ct(), Cmp::mult_r(), Etoile::nbar, nbar2, Etoile_rot::p_mom_quad, Etoile::relativistic, Tenseur::set(), Tenseur::set_std_base(), and Cmp::va.

void Et_rot_bifluid::operator= ( const Et_rot_bifluid et  ) 

Assignment to another Et_rot_bifluid.

Reimplemented from Etoile_rot.

Definition at line 290 of file et_rot_bifluid.C.

References del_deriv(), delta_car, enerps_euler, ent2, eos, gam_euler2, j_euler, nbar2, omega2, sphph_euler, and uuu2.

ostream & Et_rot_bifluid::operator>> ( ostream &  ost  )  const [virtual]
void Et_rot_bifluid::partial_display ( ostream &  ost  )  const [virtual]
double Etoile_rot::r_circ (  )  const [virtual, inherited]
double Et_rot_bifluid::r_circ2 (  )  const [virtual]

Circumferential radius for fluid 2.

Definition at line 335 of file et_bfrot_global.C.

References Etoile_rot::bbb, Map::get_mg(), Mg3d::get_nr(), Mg3d::get_nt(), Mg3d::get_type_t(), Etoile::mp, Etoile::nzet, p_r_circ2, and ray_eq2().

double Etoile_rot::r_isco ( ostream *  ost = 0x0  )  const [virtual, inherited]

Circumferential radius of the innermost stable circular orbit (ISCO).

Parameters:
ost output stream to give details of the computation; if set to 0x0 [default value], no details will be given.

Definition at line 80 of file et_rot_isco.C.

References Param::add_cmp(), Param::add_int(), Cmp::annule(), Etoile_rot::bbb, Cmp::dsdr(), Map::get_mg(), Mg3d::get_nzone(), Etoile::mp, Etoile::nnn, Etoile_rot::nphi, Etoile::nzet, Etoile_rot::p_espec_isco, Etoile_rot::p_f_eq, Etoile_rot::p_f_isco, Etoile_rot::p_lspec_isco, Etoile_rot::p_r_isco, Map::r, Etoile::ray_eq(), sqrt(), Cmp::std_base_scal(), Cmp::va, Valeur::val_point(), Map::val_r(), and zerosec().

double Etoile::ray_eq ( int  kk  )  const [inherited]
double Etoile::ray_eq (  )  const [inherited]
double Et_rot_bifluid::ray_eq2 (  )  const

Coordinate radius for fluid 2 at $\phi=0$, $\theta=\pi/2$ [r_unit].

Definition at line 532 of file et_bfrot_global.C.

References Map::get_mg(), Mg3d::get_nt(), Mg3d::get_type_p(), Mg3d::get_type_t(), l_surf2(), Etoile::mp, p_ray_eq2, Map::val_r(), and xi_surf2().

double Et_rot_bifluid::ray_eq2_pi (  )  const

Coordinate radius for fluid 2 at $\phi=\pi$, $\theta=\pi/2$ [r_unit].

Definition at line 623 of file et_bfrot_global.C.

References Map::get_mg(), Mg3d::get_np(), Mg3d::get_nt(), Mg3d::get_type_p(), Mg3d::get_type_t(), l_surf2(), Etoile::mp, p_ray_eq2_pi, ray_eq2(), Map::val_r(), and xi_surf2().

double Et_rot_bifluid::ray_eq2_pis2 (  )  const

Coordinate radius for fluid 2 at $\phi=\pi/2$, $\theta=\pi/2$ [r_unit].

Definition at line 566 of file et_bfrot_global.C.

References Map::get_mg(), Mg3d::get_np(), Mg3d::get_nt(), Mg3d::get_type_p(), Mg3d::get_type_t(), l_surf2(), Etoile::mp, p_ray_eq2_pis2, Map::val_r(), and xi_surf2().

double Etoile::ray_eq_3pis2 (  )  const [inherited]
double Etoile::ray_eq_pi (  )  const [inherited]
double Etoile::ray_eq_pis2 (  )  const [inherited]
double Etoile::ray_pole (  )  const [inherited]

Coordinate radius at $\theta=0$ [r_unit].

Definition at line 411 of file etoile_global.C.

References Map::get_mg(), Mg3d::get_type_t(), Etoile::l_surf(), Etoile::mp, Etoile::p_ray_pole, Map::val_r(), and Etoile::xi_surf().

double Et_rot_bifluid::ray_pole2 (  )  const

Coordinate radius for fluid 2 at $\theta=0$ [r_unit].

Definition at line 672 of file et_bfrot_global.C.

References Map::get_mg(), l_surf2(), Etoile::mp, p_ray_pole2, Map::val_r(), and xi_surf2().

void Et_rot_bifluid::sauve ( FILE *  fich  )  const [virtual]

Save in a file.

Reimplemented from Etoile_rot.

Definition at line 319 of file et_rot_bifluid.C.

References ent2, fwrite_be(), omega2, and Tenseur::sauve().

void Et_rot_bifluid::set_der_0x0 (  )  const [protected, virtual]

Sets to 0x0 all the pointers on derived quantities.

Reimplemented from Etoile_rot.

Definition at line 238 of file et_rot_bifluid.C.

References p_aplat2, p_l_surf2, p_mass_b1, p_mass_b2, p_r_circ2, p_ray_eq2, p_ray_eq2_pi, p_ray_eq2_pis2, p_ray_pole2, and p_xi_surf2.

void Et_rot_bifluid::set_enthalpies ( const Cmp ent_i,
const Cmp ent2_i 
)

Sets both enthalpy profiles.

Definition at line 270 of file et_rot_bifluid.C.

References del_deriv(), Etoile::ent, ent2, and equation_of_state().

void Etoile::set_enthalpy ( const Cmp ent_i  )  [inherited]

Assignment of the enthalpy field.

Definition at line 461 of file etoile.C.

References Etoile::del_deriv(), Etoile::ent, and Etoile::equation_of_state().

Map& Etoile::set_mp (  )  [inline, inherited]

Read/write of the mapping.

Definition at line 591 of file etoile.h.

References Etoile::mp.

double Etoile_rot::tsw (  )  const [virtual, inherited]
void Etoile_rot::update_metric (  )  [inherited]

Computes metric coefficients from known potentials.

The calculation is performed starting from the quantities logn , dzeta , tggg and shift , which are supposed to be up to date. From these, the following fields are updated: nnn , a_car , bbb and b_car .

Definition at line 65 of file et_rot_upmetr.C.

References Etoile::a_car, Etoile_rot::b_car, Etoile_rot::bbb, Etoile_rot::del_deriv(), Cmp::div_rsint(), Etoile_rot::dzeta, exp(), Etoile_rot::extrinsic_curvature(), Etoile_rot::logn, Etoile::nnn, Tenseur::set(), Tenseur::set_etat_qcq(), Tenseur::set_std_base(), Etoile_rot::tggg, and Etoile::unsurc2.

const Tbl & Etoile::xi_surf (  )  const [inherited]

Description of the stellar surface: returns a 2-D Tbl containing the values of the radial coordinate $\xi$ on the surface at the collocation points in $(\theta', \phi')$.

The stellar surface is defined as the location where the enthalpy (member ent ) vanishes.

Definition at line 97 of file etoile_global.C.

References Etoile::l_surf(), Etoile::p_l_surf, and Etoile::p_xi_surf.

const Tbl & Et_rot_bifluid::xi_surf2 (  )  const

Description of the surface of fluid 2: returns a 2-D Tbl containing the values of the radial coordinate $\xi$ on the surface at the collocation points in $(\theta', \phi')$.

This surface is defined as the location where the density 2 (member nbar2 ) vanishes.

Definition at line 514 of file et_bfrot_global.C.

References l_surf2(), p_l_surf2, and p_xi_surf2.

double Etoile_rot::z_eqb (  )  const [virtual, inherited]
double Etoile_rot::z_eqf (  )  const [virtual, inherited]
double Etoile_rot::z_pole (  )  const [virtual, inherited]

Redshift factor at North pole.

Definition at line 495 of file et_rot_global.C.

References Etoile::nnn, Etoile_rot::p_z_pole, and Etoile::ray_pole().


Friends And Related Function Documentation

ostream& operator<< ( ostream &  ,
const Etoile  
) [friend, inherited]

Display.


Member Data Documentation

Tenseur Etoile::a_car [protected, inherited]

Total conformal factor $A^2$.

Definition at line 503 of file etoile.h.

Tenseur Etoile_rot::ak_car [protected, inherited]

Scalar $A^2 K_{ij} K^{ij}$.

For axisymmetric stars, this quantity is related to the derivatives of $N^\varphi$ by

\[ A^2 K_{ij} K^{ij} = {B^2 \over 2 N^2} \, r^2\sin^2\theta \, \left[ \left( {\partial N^\varphi \over \partial r} \right) ^2 + {1\over r^2} \left( {\partial N^\varphi \over \partial \theta} \right) ^2 \right] \ . \]

In particular it is related to the quantities $k_1$ and $k_2$ introduced by Eqs.~(3.7) and (3.8) of Bonazzola et al. Astron. Astrophys. 278 , 421 (1993) by

\[ A^2 K_{ij} K^{ij} = 2 A^2 (k_1^2 + k_2^2) \ . \]

Definition at line 1572 of file etoile.h.

Tenseur Etoile_rot::b_car [protected, inherited]

Square of the metric factor B.

Definition at line 1493 of file etoile.h.

Tenseur Etoile_rot::bbb [protected, inherited]

Metric factor B.

Definition at line 1490 of file etoile.h.

Tenseur Etoile::beta_auto [protected, inherited]

Logarithm of the part of the product AN generated principaly by by the star.

Definition at line 494 of file etoile.h.

Tenseur Etoile::d_logn_auto_div [protected, inherited]

Gradient of logn_auto_div (if k_div!=0 ).

Definition at line 489 of file etoile.h.

The "relative velocity" (squared) $\Delta^2$ of the two fluids.

See Prix et al.(2003) and see also Eos_bifluid .

Definition at line 177 of file et_rot_bifluid.h.

Tenseur& Etoile_rot::dzeta [protected, inherited]

Metric potential $\zeta = \ln(AN)$ = beta_auto.

Definition at line 1520 of file etoile.h.

Tenseur Etoile::ener [protected, inherited]

Total energy density in the fluid frame.

Definition at line 448 of file etoile.h.

Tenseur Etoile::ener_euler [protected, inherited]

Total energy density in the Eulerian frame.

Definition at line 453 of file etoile.h.

the combination $E+S_i^i$: useful because in the Newtonian limit $\rightarrow \rho$.

Definition at line 165 of file et_rot_bifluid.h.

Tenseur Etoile::ent [protected, inherited]

Log-enthalpy (relativistic case) or specific enthalpy (Newtonian case).

Definition at line 445 of file etoile.h.

Log-enthalpy for the second fluid.

Definition at line 144 of file et_rot_bifluid.h.

const Eos_bifluid& Et_rot_bifluid::eos [protected]

Equation of state for two-fluids model.

Reimplemented from Etoile.

Definition at line 136 of file et_rot_bifluid.h.

Tenseur Etoile::gam_euler [protected, inherited]

Lorentz factor between the fluid and Eulerian observers.

Definition at line 459 of file etoile.h.

Lorentz factor between the fluid 2 and Eulerian observers.

Definition at line 171 of file et_rot_bifluid.h.

Total angular momentum (flat-space!) 3-vector $J_\mathrm{euler}$, which is related to $J^i$ of the "3+1" decomposition, but expressed in a flat-space triad.

In axisymmetric circular cases, only $J_\mathrm{euler}(\varphi)=r \sin\theta\, J^\varphi$ is nonzero.

Definition at line 162 of file et_rot_bifluid.h.

int Etoile::k_div [protected, inherited]

Index of regularity of the gravitational potential logn_auto .

If k_div=0 , logn_auto contains the total potential generated principaly by the star, otherwise it should be supplemented by logn_auto_div .

Definition at line 438 of file etoile.h.

Tenseur Etoile_rot::khi_shift [protected, inherited]

Scalar $\chi$ used in the decomposition of shift , following Shibata's prescription [Prog.

Theor. Phys. 101 , 1199 (1999)] :

\[ N^i = {7\over 8} W^i - {1\over 8} \left(\nabla^i\chi+\nabla^iW^kx_k\right) \]

Definition at line 1546 of file etoile.h.

Tenseur& Etoile_rot::logn [protected, inherited]

Metric potential $\nu = \ln N$ = logn_auto.

Definition at line 1507 of file etoile.h.

Tenseur Etoile::logn_auto [protected, inherited]

Total of the logarithm of the part of the lapse N generated principaly by the star.

In the Newtonian case, this is the Newtonian gravitational potential (in units of $c^2$).

Definition at line 472 of file etoile.h.

Tenseur Etoile::logn_auto_div [protected, inherited]

Divergent part (if k_div!=0 ) of the logarithm of the part of the lapse N generated principaly by the star.

Definition at line 485 of file etoile.h.

Tenseur Etoile::logn_auto_regu [protected, inherited]

Regular part of the logarithm of the part of the lapse N generated principaly by the star.

In the Newtonian case, this is the Newtonian gravitational potential (in units of $c^2$).

Definition at line 479 of file etoile.h.

Map& Etoile::mp [protected, inherited]

Mapping associated with the star.

Definition at line 416 of file etoile.h.

Tenseur Etoile::nbar [protected, inherited]

Baryon density in the fluid frame.

Definition at line 447 of file etoile.h.

Baryon density in the fluid frame, for fluid 2.

Definition at line 146 of file et_rot_bifluid.h.

Tenseur Etoile::nnn [protected, inherited]

Total lapse function.

Definition at line 497 of file etoile.h.

Tenseur Etoile_rot::nphi [protected, inherited]

Metric coefficient $N^\varphi$.

Definition at line 1496 of file etoile.h.

Tenseur Etoile_rot::nuf [protected, inherited]

Part of the Metric potential $\nu = \ln N$ = logn generated by the matter terms.

Definition at line 1512 of file etoile.h.

Tenseur Etoile_rot::nuq [protected, inherited]

Part of the Metric potential $\nu = \ln N$ = logn generated by the quadratic terms.

Definition at line 1517 of file etoile.h.

int Etoile::nzet [protected, inherited]

Number of domains of *mp occupied by the star.

Definition at line 421 of file etoile.h.

double Etoile_rot::omega [protected, inherited]

Rotation angular velocity ([f_unit] ).

Definition at line 1487 of file etoile.h.

double Et_rot_bifluid::omega2 [protected]

Rotation angular velocity for fluid 2 ([f_unit] ).

Definition at line 138 of file et_rot_bifluid.h.

double* Etoile_rot::p_angu_mom [mutable, protected, inherited]

Angular momentum.

Definition at line 1617 of file etoile.h.

double* Etoile_rot::p_aplat [mutable, protected, inherited]

Flatening r_pole/r_eq.

Definition at line 1622 of file etoile.h.

double* Et_rot_bifluid::p_aplat2 [mutable, protected]

Flatening r_pole/r_eq of fluid no.2.

Definition at line 207 of file et_rot_bifluid.h.

double* Etoile_rot::p_espec_isco [mutable, protected, inherited]

Specific energy of a particle on the ISCO.

Definition at line 1630 of file etoile.h.

double* Etoile_rot::p_f_eq [mutable, protected, inherited]

Orbital frequency at the equator.

Definition at line 1633 of file etoile.h.

double* Etoile_rot::p_f_isco [mutable, protected, inherited]

Orbital frequency of the ISCO.

Definition at line 1628 of file etoile.h.

double* Etoile_rot::p_grv2 [mutable, protected, inherited]

Error on the virial identity GRV2.

Definition at line 1619 of file etoile.h.

double* Etoile_rot::p_grv3 [mutable, protected, inherited]

Error on the virial identity GRV3.

Definition at line 1620 of file etoile.h.

Itbl* Etoile::p_l_surf [mutable, protected, inherited]

Description of the stellar surface: 2-D Itbl containing the values of the domain index l on the surface at the collocation points in $(\theta', \phi')$.

Definition at line 527 of file etoile.h.

Itbl* Et_rot_bifluid::p_l_surf2 [mutable, protected]

Description of the surface of fluid 2: 2-D Itbl containing the values of the domain index l on the surface at the collocation points in $(\theta', \phi')$.

Definition at line 198 of file et_rot_bifluid.h.

double* Etoile_rot::p_lspec_isco [mutable, protected, inherited]

Specific angular momentum of a particle on the ISCO.

Definition at line 1632 of file etoile.h.

double* Etoile::p_mass_b [mutable, protected, inherited]

Baryon mass.

Definition at line 535 of file etoile.h.

double* Et_rot_bifluid::p_mass_b1 [mutable, protected]

Baryon mass of fluid 1.

Definition at line 210 of file et_rot_bifluid.h.

double* Et_rot_bifluid::p_mass_b2 [mutable, protected]

Baryon mass of fluid 2.

Definition at line 211 of file et_rot_bifluid.h.

double* Etoile::p_mass_g [mutable, protected, inherited]

Gravitational mass.

Definition at line 536 of file etoile.h.

double* Etoile_rot::p_mom_quad [mutable, protected, inherited]

Quadrupole moment.

Definition at line 1626 of file etoile.h.

double* Etoile_rot::p_r_circ [mutable, protected, inherited]

Circumferential radius.

Definition at line 1621 of file etoile.h.

double* Et_rot_bifluid::p_r_circ2 [mutable, protected]

Circumferential radius of fluid no.2.

Definition at line 206 of file et_rot_bifluid.h.

double* Etoile_rot::p_r_isco [mutable, protected, inherited]

Circumferential radius of the ISCO.

Definition at line 1627 of file etoile.h.

double* Etoile::p_ray_eq [mutable, protected, inherited]

Coordinate radius at $\phi=0$, $\theta=\pi/2$.

Definition at line 509 of file etoile.h.

double* Et_rot_bifluid::p_ray_eq2 [mutable, protected]

Coordinate radius at $\phi=0$, $\theta=\pi/2$.

Definition at line 183 of file et_rot_bifluid.h.

double* Et_rot_bifluid::p_ray_eq2_pi [mutable, protected]

Coordinate radius at $\phi=\pi$, $\theta=\pi/2$.

Definition at line 189 of file et_rot_bifluid.h.

double* Et_rot_bifluid::p_ray_eq2_pis2 [mutable, protected]

Coordinate radius at $\phi=\pi/2$, $\theta=\pi/2$.

Definition at line 186 of file et_rot_bifluid.h.

double* Etoile::p_ray_eq_3pis2 [mutable, protected, inherited]

Coordinate radius at $\phi=3\pi/2$, $\theta=\pi/2$.

Definition at line 518 of file etoile.h.

double* Etoile::p_ray_eq_pi [mutable, protected, inherited]

Coordinate radius at $\phi=\pi$, $\theta=\pi/2$.

Definition at line 515 of file etoile.h.

double* Etoile::p_ray_eq_pis2 [mutable, protected, inherited]

Coordinate radius at $\phi=\pi/2$, $\theta=\pi/2$.

Definition at line 512 of file etoile.h.

double* Etoile::p_ray_pole [mutable, protected, inherited]

Coordinate radius at $\theta=0$.

Definition at line 521 of file etoile.h.

double* Et_rot_bifluid::p_ray_pole2 [mutable, protected]

Coordinate radius at $\theta=0$.

Definition at line 192 of file et_rot_bifluid.h.

double* Etoile_rot::p_tsw [mutable, protected, inherited]

Ratio T/W.

Definition at line 1618 of file etoile.h.

Tbl* Etoile::p_xi_surf [mutable, protected, inherited]

Description of the stellar surface: 2-D Tbl containing the values of the radial coordinate $\xi$ on the surface at the collocation points in $(\theta', \phi')$.

Definition at line 533 of file etoile.h.

Tbl* Et_rot_bifluid::p_xi_surf2 [mutable, protected]

Description of the surface of fluid 2: 2-D Tbl containing the values of the radial coordinate $\xi$ on the surface at the collocation points in $(\theta', \phi')$.

Definition at line 204 of file et_rot_bifluid.h.

double* Etoile_rot::p_z_eqb [mutable, protected, inherited]

Backward redshift factor at equator.

Definition at line 1624 of file etoile.h.

double* Etoile_rot::p_z_eqf [mutable, protected, inherited]

Forward redshift factor at equator.

Definition at line 1623 of file etoile.h.

double* Etoile_rot::p_z_pole [mutable, protected, inherited]

Redshift factor at North pole.

Definition at line 1625 of file etoile.h.

Tenseur Etoile::press [protected, inherited]

Fluid pressure.

Definition at line 449 of file etoile.h.

bool Etoile::relativistic [protected, inherited]

Indicator of relativity: true for a relativistic star, false for a Newtonian one.

Definition at line 426 of file etoile.h.

Tenseur Etoile::s_euler [protected, inherited]

Trace of the stress tensor in the Eulerian frame.

Definition at line 456 of file etoile.h.

Tenseur Etoile::shift [protected, inherited]

Total shift vector.

Definition at line 500 of file etoile.h.

The component $S^\varphi_\varphi$ of the stress tensor ${S^i}_j$.

Definition at line 155 of file et_rot_bifluid.h.

Cmp Etoile_rot::ssjm1_dzeta [protected, inherited]

Effective source at the previous step for the resolution of the Poisson equation for dzeta .

Definition at line 1589 of file etoile.h.

Cmp Etoile_rot::ssjm1_khi [protected, inherited]

Effective source at the previous step for the resolution of the Poisson equation for the scalar $\chi$ by means of Map_et::poisson .

$\chi$ is an intermediate quantity for the resolution of the elliptic equation for the shift vector $N^i$

Definition at line 1602 of file etoile.h.

Cmp Etoile_rot::ssjm1_nuf [protected, inherited]

Effective source at the previous step for the resolution of the Poisson equation for nuf by means of Map_et::poisson .

Definition at line 1578 of file etoile.h.

Cmp Etoile_rot::ssjm1_nuq [protected, inherited]

Effective source at the previous step for the resolution of the Poisson equation for nuq by means of Map_et::poisson .

Definition at line 1584 of file etoile.h.

Cmp Etoile_rot::ssjm1_tggg [protected, inherited]

Effective source at the previous step for the resolution of the Poisson equation for tggg .

Definition at line 1594 of file etoile.h.

Tenseur Etoile_rot::ssjm1_wshift [protected, inherited]

Effective source at the previous step for the resolution of the vector Poisson equation for $W^i$.

$W^i$ is an intermediate quantity for the resolution of the elliptic equation for the shift vector $N^i$ (Components with respect to the Cartesian triad associated with the mapping mp )

Definition at line 1611 of file etoile.h.

Tenseur Etoile_rot::tggg [protected, inherited]

Metric potential $\tilde G = (NB-1) r\sin\theta$.

Definition at line 1523 of file etoile.h.

Tenseur_sym Etoile_rot::tkij [protected, inherited]

Tensor ${\tilde K_{ij}}$ related to the extrinsic curvature tensor by ${\tilde K_{ij}} = B^{-2} K_{ij}$.

tkij contains the Cartesian components of ${\tilde K_{ij}}$.

Definition at line 1553 of file etoile.h.

Tenseur Etoile_rot::tnphi [protected, inherited]

Component $\tilde N^\varphi = N^\varphi r\sin\theta$ of the shift vector.

Definition at line 1501 of file etoile.h.

Tenseur Etoile::u_euler [protected, inherited]

Fluid 3-velocity with respect to the Eulerian observer.

Definition at line 462 of file etoile.h.

double Etoile::unsurc2 [protected, inherited]

$1/c^2$ : unsurc2=1 for a relativistic star, 0 for a Newtonian one.

Definition at line 431 of file etoile.h.

Tenseur Etoile_rot::uuu [protected, inherited]

Norm of u_euler.

Definition at line 1504 of file etoile.h.

Norm of the (fluid no.2) 3-velocity with respect to the eulerian observer.

Definition at line 168 of file et_rot_bifluid.h.

Tenseur Etoile_rot::w_shift [protected, inherited]

Vector $W^i$ used in the decomposition of shift , following Shibata's prescription [Prog.

Theor. Phys. 101 , 1199 (1999)] :

\[ N^i = {7\over 8} W^i - {1\over 8} \left(\nabla^i\chi+\nabla^iW^kx_k\right) \]

NB: w_shift contains the components of $W^i$ with respect to the Cartesian triad associated with the mapping mp .

Definition at line 1536 of file etoile.h.


The documentation for this class was generated from the following files:

Generated on 7 Oct 2014 for LORENE by  doxygen 1.6.1