Et_rot_mag Class Reference
[Stars and black holes]

Class for magnetized (isolator or perfect conductor), rigidly rotating stars. More...

#include <et_rot_mag.h>

Inheritance diagram for Et_rot_mag:
Etoile_rot Etoile Et_magnetisation

List of all members.

Public Member Functions

 Et_rot_mag (Map &mp_i, int nzet_i, bool relat, const Eos &eos_i, const int cond)
 Standard constructor.
 Et_rot_mag (const Et_rot_mag &)
 Copy constructor.
 Et_rot_mag (Map &mp_i, const Eos &eos_i, FILE *fich, int withbphi=0)
 Constructor from a file (see sauve(FILE*) ).
virtual ~Et_rot_mag ()
 Destructor.
void operator= (const Et_rot_mag &)
 Assignment to another Et_rot_mag.
bool is_conduct () const
 Tells if the star is made of conducting or isolating material.
const Cmpget_At () const
 Returns the t component of the electromagnetic potential, divided by $\mu_0$.
const Cmpget_Aphi () const
 Returns the $\varphi$ component of the electromagnetic potential divided by $\mu_0$.
const Cmpget_Bphi () const
 Returns the $\varphi$ component of the magnetic field.
const Cmpget_jt () const
 Returns the t component of the current 4-vector.
const Cmpget_jphi () const
 Returns the $\varphi$ component of the current 4-vector.
const Tenseurget_Eem () const
 Returns the electromagnetic energy density in the Eulerian frame.
const Tenseurget_Jpem () const
 Returns the $\varphi$-component of the electromagnetic momentum density 3-vector, as measured in the Eulerian frame.
const Tenseurget_Srrem () const
 Returns the rr-component of the electromagnetic stress 3-tensor, as measured in the Eulerian frame.
const Tenseurget_Sppem () const
 Returns the $\varphi \varphi$ component of the electromagnetic stress 3-tensor, as measured in the Eulerian frame.
double get_Q () const
 Returns the requested electric charge in the case of a perfect conductor and the charge/baryon for an isolator.
double get_a_j () const
 Returns the amplitude of the current/charge function.
virtual void sauve (FILE *) const
 Save in a file.
virtual ostream & operator>> (ostream &) const
 Operator >> (virtual function called by the operator <<).
Tenseur Elec () const
 Computes the electric field spherical components in Lorene's units.
Tenseur Magn () const
 Computes the magnetic field spherical components in Lorene's units.
virtual void MHD_comput ()
 Computes the electromagnetic part of the stress-energy tensor.
virtual double mass_g () const
 Gravitational mass.
virtual double angu_mom () const
 Angular momentum.
virtual double grv2 () const
 Error on the virial identity GRV2.
virtual double tsw () const
 Ratio T/W.
double MagMom () const
 Magnetic Momentum $\cal M$ in SI units.
double Q_comput () const
 Computed charge deduced from the asymptotic behaviour of At [SI units].
double Q_int () const
 Computed charge from the integration of charge density over the star (i.e.
double GyroMag () const
 Gyromagnetic ratio $\sigma = \frac{2{\cal M}M}{QJ}$.
virtual double grv3 (ostream *ost=0x0) const
 Error on the virial identity GRV3.
virtual double mom_quad () const
 Quadrupole moment.
void magnet_comput (const int adapt_flag, Cmp(*f_j)(const Cmp &x, const double), Param &par_poisson_At, Param &par_poisson_Avect)
 Computes the electromagnetic quantities solving the Maxwell equations (6) and (7) of [Bocquet, Bonazzola, Gourgoulhon and Novak, Astron.
virtual void magnet_comput_plus (const int adapt_flag, const int initial_j, const Tbl an_j, Cmp(*f_j)(const Cmp &x, const Tbl), const Tbl bn_j, Cmp(*g_j)(const Cmp &x, const Tbl), Cmp(*N_j)(const Cmp &x, const Tbl), Param &par_poisson_At, Param &par_poisson_Avect)
 Computes the electromagnetic quantities solving the Maxwell equations (6) and (7) of [Bocquet, Bonazzola, Gourgoulhon and Novak, Astron.
void equilibrium_mag (double ent_c, double omega0, double fact_omega, int nzadapt, const Tbl &ent_limit, const Itbl &icontrol, const Tbl &control, double mbar_wanted, double aexp_mass, Tbl &diff, const double Q0, const double a_j0, Cmp(*f_j)(const Cmp &x, const double), Cmp(*M_j)(const Cmp &x, const double))
 Computes an equilibrium configuration.
void equilibrium_mag_plus (const Itbl &icontrol, const Tbl &control, Tbl &diff, const int initial_j, const Tbl an_j, Cmp(*f_j)(const Cmp &x, const Tbl), Cmp(*M_j)(const Cmp &x, const Tbl), const Tbl bn_j, Cmp(*g_j)(const Cmp &x, const Tbl), Cmp(*N_j)(const Cmp &x, const Tbl), const double relax_mag)
 Computes an equilibrium configuration.
virtual double get_omega_c () const
 Returns the central value of the rotation angular velocity ([f_unit] ).
const Tenseurget_bbb () const
 Returns the metric factor B.
const Tenseurget_b_car () const
 Returns the square of the metric factor B.
const Tenseurget_nphi () const
 Returns the metric coefficient $N^\varphi$.
const Tenseurget_tnphi () const
 Returns the component $\tilde N^\varphi = N^\varphi r\sin\theta$ of the shift vector.
const Tenseurget_uuu () const
 Returns the norm of u_euler.
const Tenseurget_logn () const
 Returns the metric potential $\nu = \ln N$ = logn_auto.
const Tenseurget_nuf () const
 Returns the part of the Metric potential $\nu = \ln N$ = logn generated by the matter terms.
const Tenseurget_nuq () const
 Returns the Part of the Metric potential $\nu = \ln N$ = logn generated by the quadratic terms.
const Tenseurget_dzeta () const
 Returns the Metric potential $\zeta = \ln(AN)$ = beta_auto.
const Tenseurget_tggg () const
 Returns the Metric potential $\tilde G = (NB-1) r\sin\theta$.
const Tenseurget_w_shift () const
 Returns the vector $W^i$ used in the decomposition of shift , following Shibata's prescription [Prog.
const Tenseurget_khi_shift () const
 Returns the scalar $\chi$ used in the decomposition of shift following Shibata's prescription [Prog.
const Tenseur_symget_tkij () const
 Returns the tensor ${\tilde K_{ij}}$ related to the extrinsic curvature tensor by ${\tilde K_{ij}} = B^{-2} K_{ij}$.
const Tenseurget_ak_car () const
 Returns the scalar $A^2 K_{ij} K^{ij}$.
virtual void display_poly (ostream &) const
 Display in polytropic units.
virtual const Itbll_surf () const
 Description of the stellar surface: returns a 2-D Itbl containing the values of the domain index l on the surface at the collocation points in $(\theta', \phi')$.
virtual double mass_b () const
 Baryon mass.
virtual double r_circ () const
 Circumferential radius.
virtual double aplat () const
 Flatening r_pole/r_eq.
virtual double z_eqf () const
 Forward redshift factor at equator.
virtual double z_eqb () const
 Backward redshift factor at equator.
virtual double z_pole () const
 Redshift factor at North pole.
virtual double r_isco (ostream *ost=0x0) const
 Circumferential radius of the innermost stable circular orbit (ISCO).
virtual double f_isco () const
 Orbital frequency at the innermost stable circular orbit (ISCO).
virtual double espec_isco () const
 Energy of a particle on the ISCO.
virtual double lspec_isco () const
 Angular momentum of a particle on the ISCO.
virtual double f_eccentric (double ecc, double periast, ostream *ost=0x0) const
 Computation of frequency of eccentric orbits.
virtual double f_eq () const
 Orbital frequency at the equator.
virtual void hydro_euler ()
 Computes the hydrodynamical quantities relative to the Eulerian observer from those in the fluid frame.
void update_metric ()
 Computes metric coefficients from known potentials.
void fait_shift ()
 Computes shift from w_shift and khi_shift according to Shibata's prescription [Prog.
void fait_nphi ()
 Computes tnphi and nphi from the Cartesian components of the shift, stored in shift .
void extrinsic_curvature ()
 Computes tkij and ak_car from shift , nnn and b_car .
virtual void equilibrium (double ent_c, double omega0, double fact_omega, int nzadapt, const Tbl &ent_limit, const Itbl &icontrol, const Tbl &control, double mbar_wanted, double aexp_mass, Tbl &diff, Param *=0x0)
 Computes an equilibrium configuration.
Mapset_mp ()
 Read/write of the mapping.
void set_enthalpy (const Cmp &)
 Assignment of the enthalpy field.
virtual void equation_of_state ()
 Computes the proper baryon and energy density, as well as pressure from the enthalpy.
virtual void equilibrium_spher (double ent_c, double precis=1.e-14, const Tbl *ent_limit=0x0)
 Computes a spherical static configuration.
void equil_spher_regular (double ent_c, double precis=1.e-14)
 Computes a spherical static configuration.
virtual void equil_spher_falloff (double ent_c, double precis=1.e-14)
 Computes a spherical static configuration with the outer boundary condition at a finite radius.
const Mapget_mp () const
 Returns the mapping.
int get_nzet () const
 Returns the number of domains occupied by the star.
bool is_relativistic () const
 Returns true for a relativistic star, false for a Newtonian one.
const Eosget_eos () const
 Returns the equation of state.
const Tenseurget_ent () const
 Returns the enthalpy field.
const Tenseurget_nbar () const
 Returns the proper baryon density.
const Tenseurget_ener () const
 Returns the proper total energy density.
const Tenseurget_press () const
 Returns the fluid pressure.
const Tenseurget_ener_euler () const
 Returns the total energy density with respect to the Eulerian observer.
const Tenseurget_s_euler () const
 Returns the trace of the stress tensor in the Eulerian frame.
const Tenseurget_gam_euler () const
 Returns the Lorentz factor between the fluid and Eulerian observers.
const Tenseurget_u_euler () const
 Returns the fluid 3-velocity with respect to the Eulerian observer.
const Tenseurget_logn_auto () const
 Returns the logarithm of the part of the lapse N generated principaly by the star.
const Tenseurget_logn_auto_regu () const
 Returns the regular part of the logarithm of the part of the lapse N generated principaly by the star.
const Tenseurget_logn_auto_div () const
 Returns the divergent part of the logarithm of the part of the lapse N generated principaly by the star.
const Tenseurget_d_logn_auto_div () const
 Returns the gradient of logn_auto_div.
const Tenseurget_beta_auto () const
 Returns the logarithm of the part of the product AN generated principaly by the star.
const Tenseurget_nnn () const
 Returns the total lapse function N.
const Tenseurget_shift () const
 Returns the total shift vector $N^i$.
const Tenseurget_a_car () const
 Returns the total conformal factor $A^2$.
double ray_eq () const
 Coordinate radius at $\phi=0$, $\theta=\pi/2$ [r_unit].
double ray_eq (int kk) const
 Coordinate radius at $\phi=2k\pi/np$, $\theta=\pi/2$ [r_unit].
double ray_eq_pis2 () const
 Coordinate radius at $\phi=\pi/2$, $\theta=\pi/2$ [r_unit].
double ray_eq_pi () const
 Coordinate radius at $\phi=\pi$, $\theta=\pi/2$ [r_unit].
double ray_eq_3pis2 () const
 Coordinate radius at $\phi=3\pi/2$, $\theta=\pi/2$ [r_unit].
double ray_pole () const
 Coordinate radius at $\theta=0$ [r_unit].
const Tblxi_surf () const
 Description of the stellar surface: returns a 2-D Tbl containing the values of the radial coordinate $\xi$ on the surface at the collocation points in $(\theta', \phi')$.

Static Public Member Functions

static double lambda_grv2 (const Cmp &sou_m, const Cmp &sou_q)
 Computes the coefficient $\lambda$ which ensures that the GRV2 virial identity is satisfied.

Protected Member Functions

virtual void del_deriv () const
 Deletes all the derived quantities.
virtual void set_der_0x0 () const
 Sets to 0x0 all the pointers on derived quantities.
virtual void del_hydro_euler ()
 Sets to ETATNONDEF (undefined state) the hydrodynamical quantities relative to the Eulerian observer.
virtual void partial_display (ostream &) const
 Printing of some informations, excluding all global quantities.

Protected Attributes

Cmp A_t
 t-component of the elecctromagnetic potential 1-form, divided by $\mu_0$.
Cmp A_phi
 $\varphi$-component of the electromagnetic potential 1-form divided by $\mu_0$.
Cmp B_phi
 $\varphi$-component of the magnetic field
Cmp j_t
 t-component of the current 4-vector
Cmp j_phi
 $\varphi$-component of the current 4-vector
Tenseur E_em
 electromagnetic energy density in the Eulerian frame
Tenseur Jp_em
 $\varphi$ component of the electromagnetic momentum density 3-vector, as measured in the Eulerian frame.
Tenseur Srr_em
 rr component of the electromagnetic stress 3-tensor, as measured in the Eulerian frame. (not used and set to 0, should be supressed)
Tenseur Spp_em
 $\varphi \varphi$ component of the electromagnetic stress 3-tensor, as measured in the Eulerian frame.
double Q
 In the case of a perfect conductor, the requated baryonic charge.
double a_j
 Amplitude of the curent/charge function.
int conduc
 Flag: conduc=0->isolator, 1->perfect conductor.
double omega
 Rotation angular velocity ([f_unit] ).
Tenseur bbb
 Metric factor B.
Tenseur b_car
 Square of the metric factor B.
Tenseur nphi
 Metric coefficient $N^\varphi$.
Tenseur tnphi
 Component $\tilde N^\varphi = N^\varphi r\sin\theta$ of the shift vector.
Tenseur uuu
 Norm of u_euler.
Tenseurlogn
 Metric potential $\nu = \ln N$ = logn_auto.
Tenseur nuf
 Part of the Metric potential $\nu = \ln N$ = logn generated by the matter terms.
Tenseur nuq
 Part of the Metric potential $\nu = \ln N$ = logn generated by the quadratic terms.
Tenseurdzeta
 Metric potential $\zeta = \ln(AN)$ = beta_auto.
Tenseur tggg
 Metric potential $\tilde G = (NB-1) r\sin\theta$.
Tenseur w_shift
 Vector $W^i$ used in the decomposition of shift , following Shibata's prescription [Prog.
Tenseur khi_shift
 Scalar $\chi$ used in the decomposition of shift , following Shibata's prescription [Prog.
Tenseur_sym tkij
 Tensor ${\tilde K_{ij}}$ related to the extrinsic curvature tensor by ${\tilde K_{ij}} = B^{-2} K_{ij}$.
Tenseur ak_car
 Scalar $A^2 K_{ij} K^{ij}$.
Cmp ssjm1_nuf
 Effective source at the previous step for the resolution of the Poisson equation for nuf by means of Map_et::poisson .
Cmp ssjm1_nuq
 Effective source at the previous step for the resolution of the Poisson equation for nuq by means of Map_et::poisson .
Cmp ssjm1_dzeta
 Effective source at the previous step for the resolution of the Poisson equation for dzeta .
Cmp ssjm1_tggg
 Effective source at the previous step for the resolution of the Poisson equation for tggg .
Cmp ssjm1_khi
 Effective source at the previous step for the resolution of the Poisson equation for the scalar $\chi$ by means of Map_et::poisson .
Tenseur ssjm1_wshift
 Effective source at the previous step for the resolution of the vector Poisson equation for $W^i$.
double * p_angu_mom
 Angular momentum.
double * p_tsw
 Ratio T/W.
double * p_grv2
 Error on the virial identity GRV2.
double * p_grv3
 Error on the virial identity GRV3.
double * p_r_circ
 Circumferential radius.
double * p_aplat
 Flatening r_pole/r_eq.
double * p_z_eqf
 Forward redshift factor at equator.
double * p_z_eqb
 Backward redshift factor at equator.
double * p_z_pole
 Redshift factor at North pole.
double * p_mom_quad
 Quadrupole moment.
double * p_r_isco
 Circumferential radius of the ISCO.
double * p_f_isco
 Orbital frequency of the ISCO.
double * p_espec_isco
 Specific energy of a particle on the ISCO.
double * p_lspec_isco
 Specific angular momentum of a particle on the ISCO.
double * p_f_eq
 Orbital frequency at the equator.
Mapmp
 Mapping associated with the star.
int nzet
 Number of domains of *mp occupied by the star.
bool relativistic
 Indicator of relativity: true for a relativistic star, false for a Newtonian one.
double unsurc2
 $1/c^2$ : unsurc2=1 for a relativistic star, 0 for a Newtonian one.
int k_div
 Index of regularity of the gravitational potential logn_auto .
const Eoseos
 Equation of state of the stellar matter.
Tenseur ent
 Log-enthalpy (relativistic case) or specific enthalpy (Newtonian case).
Tenseur nbar
 Baryon density in the fluid frame.
Tenseur ener
 Total energy density in the fluid frame.
Tenseur press
 Fluid pressure.
Tenseur ener_euler
 Total energy density in the Eulerian frame.
Tenseur s_euler
 Trace of the stress tensor in the Eulerian frame.
Tenseur gam_euler
 Lorentz factor between the fluid and Eulerian observers.
Tenseur u_euler
 Fluid 3-velocity with respect to the Eulerian observer.
Tenseur logn_auto
 Total of the logarithm of the part of the lapse N generated principaly by the star.
Tenseur logn_auto_regu
 Regular part of the logarithm of the part of the lapse N generated principaly by the star.
Tenseur logn_auto_div
 Divergent part (if k_div!=0 ) of the logarithm of the part of the lapse N generated principaly by the star.
Tenseur d_logn_auto_div
 Gradient of logn_auto_div (if k_div!=0 ).
Tenseur beta_auto
 Logarithm of the part of the product AN generated principaly by by the star.
Tenseur nnn
 Total lapse function.
Tenseur shift
 Total shift vector.
Tenseur a_car
 Total conformal factor $A^2$.
double * p_ray_eq
 Coordinate radius at $\phi=0$, $\theta=\pi/2$.
double * p_ray_eq_pis2
 Coordinate radius at $\phi=\pi/2$, $\theta=\pi/2$.
double * p_ray_eq_pi
 Coordinate radius at $\phi=\pi$, $\theta=\pi/2$.
double * p_ray_eq_3pis2
 Coordinate radius at $\phi=3\pi/2$, $\theta=\pi/2$.
double * p_ray_pole
 Coordinate radius at $\theta=0$.
Itblp_l_surf
 Description of the stellar surface: 2-D Itbl containing the values of the domain index l on the surface at the collocation points in $(\theta', \phi')$.
Tblp_xi_surf
 Description of the stellar surface: 2-D Tbl containing the values of the radial coordinate $\xi$ on the surface at the collocation points in $(\theta', \phi')$.
double * p_mass_b
 Baryon mass.
double * p_mass_g
 Gravitational mass.

Friends

ostream & operator<< (ostream &, const Etoile &)
 Display.

Detailed Description

Class for magnetized (isolator or perfect conductor), rigidly rotating stars.

()

This is a child class of Etoile_rot , with the same metric and overloaded member functions. Triaxial pertubrations are not operational.

Definition at line 132 of file et_rot_mag.h.


Constructor & Destructor Documentation

Et_rot_mag::Et_rot_mag ( Map mp_i,
int  nzet_i,
bool  relat,
const Eos eos_i,
const int  cond 
)

Standard constructor.

Definition at line 127 of file et_rot_mag.C.

References a_j, A_phi, A_t, B_phi, conduc, j_phi, j_t, Q, and set_der_0x0().

Et_rot_mag::Et_rot_mag ( const Et_rot_mag et  ) 

Copy constructor.

Definition at line 221 of file et_rot_mag.C.

References a_j, conduc, Q, and set_der_0x0().

Et_rot_mag::Et_rot_mag ( Map mp_i,
const Eos eos_i,
FILE *  fich,
int  withbphi = 0 
)

Constructor from a file (see sauve(FILE*) ).

Parameters:
mp_i Mapping on which the star will be defined
eos_i Equation of state of the stellar matter
fich input file (must have been created by the function sauve )
withbphi flag to create classes with toroidal field

Definition at line 157 of file et_rot_mag.C.

References a_j, A_phi, A_t, B_phi, conduc, E_em, fread_be(), Map::get_mg(), j_phi, j_t, Jp_em, Etoile::mp, Q, set_der_0x0(), Spp_em, and Srr_em.

Et_rot_mag::~Et_rot_mag (  )  [virtual]

Destructor.

Definition at line 245 of file et_rot_mag.C.

References del_deriv().


Member Function Documentation

double Et_rot_mag::angu_mom (  )  const [virtual]
double Etoile_rot::aplat (  )  const [virtual, inherited]

Flatening r_pole/r_eq.

Definition at line 411 of file et_rot_global.C.

References Etoile_rot::p_aplat, Etoile::ray_eq(), and Etoile::ray_pole().

void Et_rot_mag::del_deriv (  )  const [protected, virtual]

Deletes all the derived quantities.

Reimplemented from Etoile_rot.

Definition at line 254 of file et_rot_mag.C.

References set_der_0x0().

void Et_rot_mag::del_hydro_euler (  )  [protected, virtual]

Sets to ETATNONDEF (undefined state) the hydrodynamical quantities relative to the Eulerian observer.

Reimplemented from Etoile_rot.

Definition at line 269 of file et_rot_mag.C.

References del_deriv().

void Etoile_rot::display_poly ( ostream &  ost  )  const [virtual, inherited]
Tenseur Et_rot_mag::Elec (  )  const

Computes the electric field spherical components in Lorene's units.

Definition at line 141 of file et_rot_mag_global.C.

References Etoile::a_car, A_phi, A_t, Cmp::dsdr(), Map::get_bvect_spher(), Etoile::mp, Etoile::nnn, Etoile_rot::nphi, Cmp::set(), Valeur::set_base(), sqrt(), Cmp::srdsdt(), and Cmp::va.

void Etoile::equation_of_state (  )  [virtual, inherited]
void Etoile::equil_spher_falloff ( double  ent_c,
double  precis = 1.e-14 
) [virtual, inherited]

Computes a spherical static configuration with the outer boundary condition at a finite radius.

Parameters:
ent_c [input] central value of the enthalpy
precis [input] threshold in the relative difference between the enthalpy fields of two consecutive steps to stop the iterative procedure (default value: 1.e-14)

Definition at line 53 of file etoile_eqsph_falloff.C.

References Etoile::a_car, Tenseur::annule(), Etoile::beta_auto, diffrel(), Cmp::dsdr(), Map_af::dsdr(), Etoile::ener, Etoile::ener_euler, Etoile::ent, Etoile::equation_of_state(), exp(), Etoile::gam_euler, Map::get_mg(), Mg3d::get_nr(), Mg3d::get_nt(), Mg3d::get_nzone(), Map_af::homothetie(), Etoile::logn_auto, Etoile::mass_b(), Etoile::mass_g(), Etoile::mp, Etoile::nbar, Etoile::nnn, norme(), Etoile::nzet, Etoile::press, Etoile::relativistic, Etoile::s_euler, Tenseur::set(), Tenseur::set_etat_qcq(), Tenseur::set_std_base(), Etoile::shift, sqrt(), Etoile::u_euler, Etoile::unsurc2, and Map::val_r().

void Etoile::equil_spher_regular ( double  ent_c,
double  precis = 1.e-14 
) [inherited]
void Etoile_rot::equilibrium ( double  ent_c,
double  omega0,
double  fact_omega,
int  nzadapt,
const Tbl ent_limit,
const Itbl icontrol,
const Tbl control,
double  mbar_wanted,
double  aexp_mass,
Tbl diff,
Param = 0x0 
) [virtual, inherited]

Computes an equilibrium configuration.

Parameters:
ent_c [input] Central enthalpy
omega0 [input] Requested angular velocity (if fact_omega=1. )
fact_omega [input] 1.01 = search for the Keplerian frequency, 1. = otherwise.
nzadapt [input] Number of (inner) domains where the mapping adaptation to an iso-enthalpy surface should be performed
ent_limit [input] 1-D Tbl of dimension nzet which defines the enthalpy at the outer boundary of each domain
icontrol [input] Set of integer parameters (stored as a 1-D Itbl of size 8) to control the iteration:

  • icontrol(0) = mer_max : maximum number of steps
  • icontrol(1) = mer_rot : step at which the rotation is switched on
  • icontrol(2) = mer_change_omega : step at which the rotation velocity is changed to reach the final one
  • icontrol(3) = mer_fix_omega : step at which the final rotation velocity must have been reached
  • icontrol(4) = mer_mass : the absolute value of mer_mass is the step from which the baryon mass is forced to converge, by varying the central enthalpy (mer_mass>0 ) or the angular velocity (mer_mass<0 )
  • icontrol(5) = mermax_poisson : maximum number of steps in Map_et::poisson
  • icontrol(6) = mer_triax : step at which the 3-D perturbation is switched on
  • icontrol(7) = delta_mer_kep : number of steps after mer_fix_omega when omega starts to be increased by fact_omega to search for the Keplerian velocity
control [input] Set of parameters (stored as a 1-D Tbl of size 7) to control the iteration:

  • control(0) = precis : threshold on the enthalpy relative change for ending the computation
  • control(1) = omega_ini : initial angular velocity, switched on only if mer_rot<0 , otherwise 0 is used
  • control(2) = relax : relaxation factor in the main iteration
  • control(3) = relax_poisson : relaxation factor in Map_et::poisson
  • control(4) = thres_adapt : threshold on dH/dr for freezing the adaptation of the mapping
  • control(5) = ampli_triax : relative amplitude of the 3-D perturbation
  • control(6) = precis_adapt : precision for Map_et::adapt
mbar_wanted [input] Requested baryon mass (effective only if mer_mass > mer_max )
aexp_mass [input] Exponent for the increase factor of the central enthalpy to converge to the requested baryon mass
diff [output] 1-D Tbl of size 7 for the storage of some error indicators :

  • diff(0) : Relative change in the enthalpy field between two successive steps
  • diff(1) : Relative error in the resolution of the Poisson equation for nuf
  • diff(2) : Relative error in the resolution of the Poisson equation for nuq
  • diff(3) : Relative error in the resolution of the Poisson equation for dzeta
  • diff(4) : Relative error in the resolution of the Poisson equation for tggg
  • diff(5) : Relative error in the resolution of the equation for shift (x comp.)
  • diff(6) : Relative error in the resolution of the equation for shift (y comp.)

Reimplemented in Et_rot_diff.

Definition at line 143 of file et_rot_equilibrium.C.

References Etoile::a_car, abs(), Map::adapt(), Param::add_cmp_mod(), Param::add_double(), Param::add_double_mod(), Param::add_int(), Param::add_int_mod(), Param::add_tbl(), Param::add_tenseur_mod(), Etoile_rot::ak_car, Cmp::annule(), Etoile_rot::bbb, Valeur::c_cf, Tenseur::change_triad(), Map::cmp_zero(), Valeur::coef(), cos(), diffrel(), Etoile_rot::dzeta, Etoile::ener_euler, Etoile::ent, Etoile::equation_of_state(), Etoile_rot::fait_nphi(), flat_scalar_prod(), Etoile::gam_euler, Map::get_bvect_cart(), Tenseur::get_etat(), Map::get_mg(), Mg3d::get_np(), Mg3d::get_nr(), Mg3d::get_nt(), Mg3d::get_nzone(), Mg3d::get_type_t(), Tenseur::gradient_spher(), Etoile_rot::grv2(), Map_et::homothetie(), Etoile_rot::hydro_euler(), Etoile_rot::khi_shift, log(), log10(), Etoile_rot::logn, Etoile_rot::mass_b(), Etoile_rot::mass_g(), Etoile::mp, Cmp::mult_rsint(), Etoile::nbar, Etoile::nnn, Etoile_rot::nphi, Etoile_rot::nuf, Etoile_rot::nuq, Etoile::nzet, Etoile_rot::omega, Etoile_rot::partial_display(), Map::phi, Map::poisson2d(), pow(), Etoile::press, Etoile::ray_eq(), Etoile::ray_pole(), Map::reevaluate(), Etoile::relativistic, Etoile::s_euler, Tenseur::set(), Tbl::set(), Tenseur::set_etat_qcq(), Tbl::set_etat_qcq(), Tenseur::set_std_base(), Etoile::shift, Map::sint, sqrt(), Etoile_rot::ssjm1_khi, Etoile_rot::ssjm1_nuf, Etoile_rot::ssjm1_nuq, Etoile_rot::ssjm1_tggg, Etoile_rot::ssjm1_wshift, Cmp::std_base_scal(), Etoile_rot::tggg, Etoile_rot::tkij, Etoile::u_euler, Etoile_rot::update_metric(), Etoile_rot::uuu, Cmp::va, and Etoile_rot::w_shift.

void Et_rot_mag::equilibrium_mag ( double  ent_c,
double  omega0,
double  fact_omega,
int  nzadapt,
const Tbl ent_limit,
const Itbl icontrol,
const Tbl control,
double  mbar_wanted,
double  aexp_mass,
Tbl diff,
const double  Q0,
const double  a_j0,
Cmp(*)(const Cmp &x, const double)  f_j,
Cmp(*)(const Cmp &x, const double)  M_j 
)

Computes an equilibrium configuration.

Parameters:
ent_c [input] Central enthalpy
omega0 [input] Requested angular velocity (if fact_omega=1. )
fact_omega [input] 1.01 = search for the Keplerian frequency, 1. = otherwise.
nzadapt [input] Number of (inner) domains where the mapping adaptation to an iso-enthalpy surface should be performed
ent_limit [input] 1-D Tbl of dimension nzet which defines the enthalpy at the outer boundary of each domain
icontrol [input] Set of integer parameters (stored as a 1-D Itbl of size 8) to control the iteration:

  • icontrol(0) = mer_max : maximum number of steps
  • icontrol(1) = mer_rot : step at which the rotation is switched on
  • icontrol(2) = mer_change_omega : step at which the rotation velocity is changed to reach the final one
  • icontrol(3) = mer_fix_omega : step at which the final rotation velocity must have been reached
  • icontrol(4) = mer_mass : the absolute value of mer_mass is the step from which the baryon mass is forced to converge, by varying the central enthalpy (mer_mass > 0 ) or the angular velocity (mer_mass < 0 )
  • icontrol(5) = mermax_poisson : maximum number of steps in Map_et::poisson
  • icontrol(6) = mer_triax : step at which the 3-D perturbation is switched on
  • icontrol(7) = delta_mer_kep : number of steps after mer_fix_omega when omega starts to be increased by fact_omega to search for the Keplerian velocity
  • icontrol(8) = mer_mag : step at which the electromagnetic part is switched on
  • icontrol(9) = mer_change_mag : step at which the amplitude of the current/charge coupling function is changed to reach a_j0 or Q
  • icontrol(10) = mer_fix_mag : step at which the final current/charge amplitude a_j0 or Q must have been reached
  • icontrol(11) = conduc : flag 0 -> isolator material, 1 -> perfect conductor
control [input] Set of parameters (stored as a 1-D Tbl of size 7) to control the iteration:

  • control(0) = precis : threshold on the enthalpy relative change for ending the computation
  • control(1) = omega_ini : initial angular velocity, switched on only if mer_rot < 0 , otherwise 0 is used
  • control(2) = relax : relaxation factor in the main iteration
  • control(3) = relax_poisson : relaxation factor in Map_et::poisson
  • control(4) = thres_adapt : threshold on dH/dr for freezing the adaptation of the mapping
  • control(5) = ampli_triax : relative amplitude of the 3-D perturbation
  • control(6) = precis_adapt : precision for Map_et::adapt
  • control(7) = Q_ini : initial charge (total for the perfect conductor, per baryon for an isolator)
  • control(8) = a_j_ini : initial amplitude for the coupling function
mbar_wanted [input] Requested baryon mass (effective only if mer_mass>mer_max )
aexp_mass [input] Exponent for the increase factor of the central enthalpy to converge to the requested baryon mass
diff [output] 1-D Tbl of size 1 for the storage of some error indicators :

  • diff(0) : Relative change in the enthalpy field between two successive steps
Q0 [input] Requested electric charge for the case of a perfect conductor. Charge per baryon for the case of an isolator.
a_j0 [input] Amplitude for the current/charge coupling function
f_j [input] current or charge coupling function (see Bocquet et al. 1995).
M_j [input] primitive (null for zero) of current/charge coupling function (see Bocquet et al. 1995) used for the first integral of stationary motion.
void Et_rot_mag::equilibrium_mag_plus ( const Itbl icontrol,
const Tbl control,
Tbl diff,
const int  initial_j,
const Tbl  an_j,
Cmp(*)(const Cmp &x, const Tbl f_j,
Cmp(*)(const Cmp &x, const Tbl M_j,
const Tbl  bn_j,
Cmp(*)(const Cmp &x, const Tbl g_j,
Cmp(*)(const Cmp &x, const Tbl N_j,
const double  relax_mag 
)

Computes an equilibrium configuration.

Parameters:
ent_c [input] Central enthalpy
omega0 [input] Requested angular velocity (if fact_omega=1. )
fact_omega [input] 1.01 = search for the Keplerian frequency, 1. = otherwise.
nzadapt [input] Number of (inner) domains where the mapping adaptation to an iso-enthalpy surface should be performed
ent_limit [input] 1-D Tbl of dimension nzet which defines the enthalpy at the outer boundary of each domain
icontrol [input] Set of integer parameters (stored as a 1-D Itbl of size 8) to control the iteration:

  • icontrol(0) = mer_max : maximum number of steps
  • icontrol(1) = mer_rot : step at which the rotation is switched on
  • icontrol(2) = mer_change_omega : step at which the rotation velocity is changed to reach the final one
  • icontrol(3) = mer_fix_omega : step at which the final rotation velocity must have been reached
  • icontrol(4) = mer_mass : the absolute value of mer_mass is the step from which the baryon mass is forced to converge, by varying the central enthalpy (mer_mass > 0 ) or the angular velocity (mer_mass < 0 )
  • icontrol(5) = mermax_poisson : maximum number of steps in Map_et::poisson
  • icontrol(6) = mer_triax : step at which the 3-D perturbation is switched on
  • icontrol(7) = delta_mer_kep : number of steps after mer_fix_omega when omega starts to be increased by fact_omega to search for the Keplerian velocity
  • icontrol(8) = mer_mag : step at which the electromagnetic part is switched on
  • icontrol(9) = mer_change_mag : step at which the amplitude of the current/charge coupling function is changed to reach a_j0 or Q
  • icontrol(10) = mer_fix_mag : step at which the final current/charge amplitude a_j0 or Q must have been reached
  • icontrol(11) = conduc : flag 0 -> isolator material, 1 -> perfect conductor
control [input] Set of parameters (stored as a 1-D Tbl of size 7) to control the iteration:

  • control(0) = precis : threshold on the enthalpy relative change for ending the computation
  • control(1) = omega_ini : initial angular velocity, switched on only if mer_rot < 0 , otherwise 0 is used
  • control(2) = relax : relaxation factor in the main iteration
  • control(3) = relax_poisson : relaxation factor in Map_et::poisson
  • control(4) = thres_adapt : threshold on dH/dr for freezing the adaptation of the mapping
  • control(5) = ampli_triax : relative amplitude of the 3-D perturbation
  • control(6) = precis_adapt : precision for Map_et::adapt
  • control(7) = Q_ini : initial charge (total for the perfect conductor, per baryon for an isolator)
  • control(8) = a_j_ini : initial amplitude for the coupling function
mbar_wanted [input] Requested baryon mass (effective only if mer_mass>mer_max )
aexp_mass [input] Exponent for the increase factor of the central enthalpy to converge to the requested baryon mass
diff [output] 1-D Tbl of size 1 for the storage of some error indicators :

  • diff(0) : Relative change in the enthalpy field between two successive steps
Q0 [input] Requested electric charge for the case of a perfect conductor. Charge per baryon for the case of an isolator.
a_j0 [input] Amplitude for the current/charge coupling function
f_j [input] current or charge coupling function (see Bocquet et al. 1995).
M_j [input] primitive (null for zero) of current/charge coupling function (see Bocquet et al. 1995) used for the first integral of stationary motion.
void Etoile::equilibrium_spher ( double  ent_c,
double  precis = 1.e-14,
const Tbl ent_limit = 0x0 
) [virtual, inherited]

Computes a spherical static configuration.

Parameters:
ent_c [input] central value of the enthalpy
precis [input] threshold in the relative difference between the enthalpy fields of two consecutive steps to stop the iterative procedure (default value: 1.e-14)
ent_limit [input] : array of enthalpy values to be set at the boundaries between the domains; if set to 0x0 (default), the initial values will be kept.

Definition at line 83 of file etoile_equil_spher.C.

References Etoile::a_car, Map_et::adapt(), Param::add_double(), Param::add_int(), Param::add_int_mod(), Param::add_tbl(), Tenseur::annule(), Etoile::beta_auto, diffrel(), Cmp::dsdr(), Map_af::dsdr(), Etoile::ener, Etoile::ener_euler, Etoile::ent, Etoile::equation_of_state(), exp(), Etoile::gam_euler, Map_et::get_alpha(), Map_af::get_alpha(), Map_et::get_beta(), Map_af::get_beta(), Etoile::get_ent(), Map::get_mg(), Mg3d::get_nr(), Mg3d::get_nt(), Mg3d::get_nzone(), Etoile::get_press(), Map_af::homothetie(), Etoile::logn_auto, Etoile::mass_b(), Etoile::mass_g(), Etoile::mp, Etoile::nbar, Etoile::nnn, norme(), Etoile::nzet, Map_af::poisson(), Etoile::press, Etoile::relativistic, Etoile::s_euler, Tenseur::set(), Map_af::set_alpha(), Map_af::set_beta(), Tenseur::set_etat_qcq(), Tenseur::set_std_base(), Etoile::shift, sqrt(), Etoile::u_euler, Etoile::unsurc2, and Map::val_r().

double Etoile_rot::espec_isco (  )  const [virtual, inherited]

Energy of a particle on the ISCO.

Definition at line 297 of file et_rot_isco.C.

References Etoile_rot::p_espec_isco, and Etoile_rot::r_isco().

void Etoile_rot::extrinsic_curvature (  )  [inherited]
double Etoile_rot::f_eccentric ( double  ecc,
double  periast,
ostream *  ost = 0x0 
) const [virtual, inherited]

Computation of frequency of eccentric orbits.

Parameters:
ecc eccentricity of the orbit
periasrt periastron of the orbit
ost output stream to give details of the computation; if set to 0x0 [default value], no details will be given.
Returns:
orbital frequency

Definition at line 74 of file et_rot_f_eccentric.C.

References Param::add_cmp(), Param::add_int(), Cmp::annule(), Etoile_rot::bbb, Cmp::dsdr(), Map::get_mg(), Mg3d::get_nzone(), Etoile::mp, Etoile::nnn, Etoile_rot::nphi, Etoile::nzet, Etoile_rot::p_f_isco, Etoile_rot::p_r_isco, Map::r, Etoile::ray_eq(), sqrt(), Cmp::std_base_scal(), Cmp::va, Valeur::val_point(), and Map::val_r().

double Etoile_rot::f_eq (  )  const [virtual, inherited]

Orbital frequency at the equator.

Definition at line 315 of file et_rot_isco.C.

References Etoile_rot::p_f_eq, and Etoile_rot::r_isco().

double Etoile_rot::f_isco (  )  const [virtual, inherited]

Orbital frequency at the innermost stable circular orbit (ISCO).

Definition at line 263 of file et_rot_isco.C.

References Etoile_rot::p_f_isco, and Etoile_rot::r_isco().

void Etoile_rot::fait_nphi (  )  [inherited]

Computes tnphi and nphi from the Cartesian components of the shift, stored in shift .

Definition at line 756 of file etoile_rot.C.

References Map::comp_p_from_cartesian(), Tenseur::get_etat(), Etoile::mp, Etoile_rot::nphi, Tenseur::set(), Tenseur::set_etat_qcq(), Etoile::shift, and Etoile_rot::tnphi.

void Etoile_rot::fait_shift (  )  [inherited]

Computes shift from w_shift and khi_shift according to Shibata's prescription [Prog.

Theor. Phys. 101 , 1199 (1999)] :

\[ N^i = {7\over 8} W^i - {1\over 8} \left(\nabla^i\chi+\nabla^iW^kx_k\right) \]

Definition at line 723 of file etoile_rot.C.

References Tenseur::dec2_dzpuis(), Tenseur::dec_dzpuis(), Tenseur::get_etat(), Tenseur::get_triad(), Tenseur::gradient(), Etoile_rot::khi_shift, Tenseur::set(), Tenseur::set_etat_qcq(), Tenseur::set_triad(), Etoile::shift, skxk(), and Etoile_rot::w_shift.

const Tenseur& Etoile::get_a_car (  )  const [inline, inherited]

Returns the total conformal factor $A^2$.

Definition at line 718 of file etoile.h.

References Etoile::a_car.

double Et_rot_mag::get_a_j (  )  const [inline]

Returns the amplitude of the current/charge function.

Definition at line 273 of file et_rot_mag.h.

References a_j.

const Tenseur& Etoile_rot::get_ak_car (  )  const [inline, inherited]

Returns the scalar $A^2 K_{ij} K^{ij}$.

For axisymmetric stars, this quantity is related to the derivatives of $N^\varphi$ by

\[ A^2 K_{ij} K^{ij} = {B^2 \over 2 N^2} \, r^2\sin^2\theta \, \left[ \left( {\partial N^\varphi \over \partial r} \right) ^2 + {1\over r^2} \left( {\partial N^\varphi \over \partial \theta} \right) ^2 \right] \ . \]

In particular it is related to the quantities $k_1$ and $k_2$ introduced by Eqs.~(3.7) and (3.8) of Bonazzola et al. Astron. Astrophys. 278 , 421 (1993) by

\[ A^2 K_{ij} K^{ij} = 2 A^2 (k_1^2 + k_2^2) \ . \]

Definition at line 1782 of file etoile.h.

References Etoile_rot::ak_car.

const Cmp& Et_rot_mag::get_Aphi (  )  const [inline]

Returns the $\varphi$ component of the electromagnetic potential divided by $\mu_0$.

Definition at line 240 of file et_rot_mag.h.

References A_phi.

const Cmp& Et_rot_mag::get_At (  )  const [inline]

Returns the t component of the electromagnetic potential, divided by $\mu_0$.

Definition at line 235 of file et_rot_mag.h.

References A_t.

const Tenseur& Etoile_rot::get_b_car (  )  const [inline, inherited]

Returns the square of the metric factor B.

Definition at line 1698 of file etoile.h.

References Etoile_rot::b_car.

const Tenseur& Etoile_rot::get_bbb (  )  const [inline, inherited]

Returns the metric factor B.

Definition at line 1695 of file etoile.h.

References Etoile_rot::bbb.

const Tenseur& Etoile::get_beta_auto (  )  const [inline, inherited]

Returns the logarithm of the part of the product AN generated principaly by the star.

Definition at line 709 of file etoile.h.

References Etoile::beta_auto.

const Cmp& Et_rot_mag::get_Bphi (  )  const [inline]

Returns the $\varphi$ component of the magnetic field.

Definition at line 243 of file et_rot_mag.h.

References B_phi.

const Tenseur& Etoile::get_d_logn_auto_div (  )  const [inline, inherited]

Returns the gradient of logn_auto_div.

Definition at line 704 of file etoile.h.

References Etoile::d_logn_auto_div.

const Tenseur& Etoile_rot::get_dzeta (  )  const [inline, inherited]

Returns the Metric potential $\zeta = \ln(AN)$ = beta_auto.

Definition at line 1725 of file etoile.h.

References Etoile_rot::dzeta.

const Tenseur& Et_rot_mag::get_Eem (  )  const [inline]

Returns the electromagnetic energy density in the Eulerian frame.

Definition at line 249 of file et_rot_mag.h.

References E_em.

const Tenseur& Etoile::get_ener (  )  const [inline, inherited]

Returns the proper total energy density.

Definition at line 664 of file etoile.h.

References Etoile::ener.

const Tenseur& Etoile::get_ener_euler (  )  const [inline, inherited]

Returns the total energy density with respect to the Eulerian observer.

Definition at line 670 of file etoile.h.

References Etoile::ener_euler.

const Tenseur& Etoile::get_ent (  )  const [inline, inherited]

Returns the enthalpy field.

Definition at line 658 of file etoile.h.

References Etoile::ent.

const Eos& Etoile::get_eos (  )  const [inline, inherited]

Returns the equation of state.

Reimplemented in Et_rot_bifluid.

Definition at line 655 of file etoile.h.

References Etoile::eos.

const Tenseur& Etoile::get_gam_euler (  )  const [inline, inherited]

Returns the Lorentz factor between the fluid and Eulerian observers.

Definition at line 676 of file etoile.h.

References Etoile::gam_euler.

const Tenseur& Et_rot_mag::get_Jpem (  )  const [inline]

Returns the $\varphi$-component of the electromagnetic momentum density 3-vector, as measured in the Eulerian frame.

Definition at line 254 of file et_rot_mag.h.

References Jp_em.

const Cmp& Et_rot_mag::get_jphi (  )  const [inline]

Returns the $\varphi$ component of the current 4-vector.

Definition at line 247 of file et_rot_mag.h.

References j_phi.

const Cmp& Et_rot_mag::get_jt (  )  const [inline]

Returns the t component of the current 4-vector.

Definition at line 245 of file et_rot_mag.h.

References j_t.

const Tenseur& Etoile_rot::get_khi_shift (  )  const [inline, inherited]

Returns the scalar $\chi$ used in the decomposition of shift following Shibata's prescription [Prog.

Theor. Phys. 101 , 1199 (1999)] :

\[ N^i = {7\over 8} W^i - {1\over 8} \left(\nabla^i\chi+\nabla^iW^kx_k\right) \]

NB: w_shift contains the components of $W^i$ with respect to the Cartesian triad associated with the mapping mp .

Definition at line 1756 of file etoile.h.

References Etoile_rot::khi_shift.

const Tenseur& Etoile_rot::get_logn (  )  const [inline, inherited]

Returns the metric potential $\nu = \ln N$ = logn_auto.

Definition at line 1712 of file etoile.h.

References Etoile_rot::logn.

const Tenseur& Etoile::get_logn_auto (  )  const [inline, inherited]

Returns the logarithm of the part of the lapse N generated principaly by the star.

In the Newtonian case, this is the Newtonian gravitational potential (in units of $c^2$).

Definition at line 686 of file etoile.h.

References Etoile::logn_auto.

const Tenseur& Etoile::get_logn_auto_div (  )  const [inline, inherited]

Returns the divergent part of the logarithm of the part of the lapse N generated principaly by the star.

In the Newtonian case, this is the diverging part of the Newtonian gravitational potential (in units of $c^2$).

Definition at line 700 of file etoile.h.

References Etoile::logn_auto_div.

const Tenseur& Etoile::get_logn_auto_regu (  )  const [inline, inherited]

Returns the regular part of the logarithm of the part of the lapse N generated principaly by the star.

In the Newtonian case, this is the Newtonian gravitational potential (in units of $c^2$).

Definition at line 693 of file etoile.h.

References Etoile::logn_auto_regu.

const Map& Etoile::get_mp (  )  const [inline, inherited]

Returns the mapping.

Definition at line 644 of file etoile.h.

References Etoile::mp.

const Tenseur& Etoile::get_nbar (  )  const [inline, inherited]

Returns the proper baryon density.

Definition at line 661 of file etoile.h.

References Etoile::nbar.

const Tenseur& Etoile::get_nnn (  )  const [inline, inherited]

Returns the total lapse function N.

Definition at line 712 of file etoile.h.

References Etoile::nnn.

const Tenseur& Etoile_rot::get_nphi (  )  const [inline, inherited]

Returns the metric coefficient $N^\varphi$.

Definition at line 1701 of file etoile.h.

References Etoile_rot::nphi.

const Tenseur& Etoile_rot::get_nuf (  )  const [inline, inherited]

Returns the part of the Metric potential $\nu = \ln N$ = logn generated by the matter terms.

Definition at line 1717 of file etoile.h.

References Etoile_rot::nuf.

const Tenseur& Etoile_rot::get_nuq (  )  const [inline, inherited]

Returns the Part of the Metric potential $\nu = \ln N$ = logn generated by the quadratic terms.

Definition at line 1722 of file etoile.h.

References Etoile_rot::nuq.

int Etoile::get_nzet (  )  const [inline, inherited]

Returns the number of domains occupied by the star.

Definition at line 647 of file etoile.h.

References Etoile::nzet.

double Etoile_rot::get_omega_c (  )  const [virtual, inherited]

Returns the central value of the rotation angular velocity ([f_unit] ).

Reimplemented in Et_rot_diff.

Definition at line 655 of file etoile_rot.C.

References Etoile_rot::omega.

const Tenseur& Etoile::get_press (  )  const [inline, inherited]

Returns the fluid pressure.

Definition at line 667 of file etoile.h.

References Etoile::press.

double Et_rot_mag::get_Q (  )  const [inline]

Returns the requested electric charge in the case of a perfect conductor and the charge/baryon for an isolator.

Definition at line 271 of file et_rot_mag.h.

References Q.

const Tenseur& Etoile::get_s_euler (  )  const [inline, inherited]

Returns the trace of the stress tensor in the Eulerian frame.

Definition at line 673 of file etoile.h.

References Etoile::s_euler.

const Tenseur& Etoile::get_shift (  )  const [inline, inherited]

Returns the total shift vector $N^i$.

Definition at line 715 of file etoile.h.

References Etoile::shift.

const Tenseur& Et_rot_mag::get_Sppem (  )  const [inline]

Returns the $\varphi \varphi$ component of the electromagnetic stress 3-tensor, as measured in the Eulerian frame.

Definition at line 265 of file et_rot_mag.h.

References Spp_em.

const Tenseur& Et_rot_mag::get_Srrem (  )  const [inline]

Returns the rr-component of the electromagnetic stress 3-tensor, as measured in the Eulerian frame.

(not used and always equal to 0, should be supressed)

Definition at line 260 of file et_rot_mag.h.

References Srr_em.

const Tenseur& Etoile_rot::get_tggg (  )  const [inline, inherited]

Returns the Metric potential $\tilde G = (NB-1) r\sin\theta$.

Definition at line 1728 of file etoile.h.

References Etoile_rot::tggg.

const Tenseur_sym& Etoile_rot::get_tkij (  )  const [inline, inherited]

Returns the tensor ${\tilde K_{ij}}$ related to the extrinsic curvature tensor by ${\tilde K_{ij}} = B^{-2} K_{ij}$.

tkij contains the Cartesian components of ${\tilde K_{ij}}$.

Definition at line 1763 of file etoile.h.

References Etoile_rot::tkij.

const Tenseur& Etoile_rot::get_tnphi (  )  const [inline, inherited]

Returns the component $\tilde N^\varphi = N^\varphi r\sin\theta$ of the shift vector.

Definition at line 1706 of file etoile.h.

References Etoile_rot::tnphi.

const Tenseur& Etoile::get_u_euler (  )  const [inline, inherited]

Returns the fluid 3-velocity with respect to the Eulerian observer.

Definition at line 679 of file etoile.h.

References Etoile::u_euler.

const Tenseur& Etoile_rot::get_uuu (  )  const [inline, inherited]

Returns the norm of u_euler.

Definition at line 1709 of file etoile.h.

References Etoile_rot::uuu.

const Tenseur& Etoile_rot::get_w_shift (  )  const [inline, inherited]

Returns the vector $W^i$ used in the decomposition of shift , following Shibata's prescription [Prog.

Theor. Phys. 101 , 1199 (1999)] :

\[ N^i = {7\over 8} W^i - {1\over 8} \left(\nabla^i\chi+\nabla^iW^kx_k\right) \]

NB: w_shift contains the components of $W^i$ with respect to the Cartesian triad associated with the mapping mp .

Definition at line 1742 of file etoile.h.

References Etoile_rot::w_shift.

double Et_rot_mag::grv2 (  )  const [virtual]
double Et_rot_mag::grv3 ( ostream *  ost = 0x0  )  const [virtual]

Error on the virial identity GRV3.

The error is computed as the integral defined by Eq. (43) of [Gourgoulhon and Bonazzola, Class. Quantum Grav. 11 , 443 (1994)] divided by the integral of the matter terms.

Parameters:
ost output stream to give details of the computation; if set to 0x0 [default value], no details will be given.

Reimplemented from Etoile_rot.

Definition at line 394 of file et_rot_mag_global.C.

References Etoile::a_car, Etoile_rot::ak_car, Etoile_rot::bbb, Etoile_rot::dzeta, flat_scalar_prod(), Cmp::get_dzpuis(), Cmp::get_etat(), Tenseur::gradient_spher(), log(), Etoile_rot::logn, Etoile::mp, Valeur::mult_ct(), Etoile::nbar, Etoile_rot::p_grv3, Etoile::press, Etoile::relativistic, Etoile::s_euler, Cmp::set_dzpuis(), Tenseur::set_std_base(), Spp_em, Valeur::ssint(), Cmp::std_base_scal(), Valeur::sx(), Etoile_rot::uuu, Cmp::va, and Map_radial::xsr.

double Et_rot_mag::GyroMag (  )  const

Gyromagnetic ratio $\sigma = \frac{2{\cal M}M}{QJ}$.

Definition at line 258 of file et_rot_mag_global.C.

References angu_mom(), MagMom(), mass_g(), and Q_comput().

void Etoile_rot::hydro_euler (  )  [virtual, inherited]

Computes the hydrodynamical quantities relative to the Eulerian observer from those in the fluid frame.

The calculation is performed starting from the quantities ent , ener , press , and a_car , which are supposed to be up to date. From these, the following fields are updated: gam_euler , u_euler , ener_euler , s_euler .

Reimplemented from Etoile.

Reimplemented in Et_rot_bifluid, and Et_rot_diff.

Definition at line 79 of file et_rot_hydro.C.

References Etoile::a_car, Tenseur::annule(), Etoile_rot::b_car, Tenseur::change_triad(), Etoile_rot::del_deriv(), Etoile::ener, Etoile::ener_euler, Etoile::gam_euler, Map::get_bvect_cart(), Map::get_bvect_spher(), Tenseur::get_etat(), Map::get_mg(), Mg3d::get_nzone(), Etoile::mp, Etoile::nnn, Etoile_rot::omega, Etoile::press, Etoile::s_euler, Tenseur::set(), Tenseur::set_etat_qcq(), Tenseur::set_std_base(), Tenseur::set_triad(), Etoile::shift, sqrt(), Etoile::u_euler, Etoile::unsurc2, Etoile_rot::uuu, Map::x, and Map::y.

bool Et_rot_mag::is_conduct (  )  const [inline]

Tells if the star is made of conducting or isolating material.

Definition at line 230 of file et_rot_mag.h.

References conduc.

bool Etoile::is_relativistic (  )  const [inline, inherited]

Returns true for a relativistic star, false for a Newtonian one.

Definition at line 652 of file etoile.h.

References Etoile::relativistic.

const Itbl & Etoile_rot::l_surf (  )  const [virtual, inherited]

Description of the stellar surface: returns a 2-D Itbl containing the values of the domain index l on the surface at the collocation points in $(\theta', \phi')$.

The stellar surface is defined as the location where the enthalpy (member ent ) vanishes.

Reimplemented from Etoile.

Reimplemented in Et_rot_bifluid.

Definition at line 85 of file et_rot_global.C.

References Etoile::ent, Map::get_mg(), Mg3d::get_np(), Mg3d::get_nt(), Etoile::mp, Etoile::nzet, Etoile::p_l_surf, and Etoile::p_xi_surf.

double Etoile_rot::lambda_grv2 ( const Cmp sou_m,
const Cmp sou_q 
) [static, inherited]

Computes the coefficient $\lambda$ which ensures that the GRV2 virial identity is satisfied.

$\lambda$ is the coefficient by which one must multiply the quadratic source term $\sigma_q$ of the 2-D Poisson equation

\[ \Delta_2 u = \sigma_m + \sigma_q \]

in order that the total source does not contain any monopolar term, i.e. in order that

\[ \int_0^{2\pi} \int_0^{+\infty} \sigma(r, \theta) \, r \, dr \, d\theta = 0 \ , \]

where $\sigma = \sigma_m + \sigma_q$. $\lambda$ is computed according to the formula

\[ \lambda = - { \int_0^{2\pi} \int_0^{+\infty} \sigma_m(r, \theta) \, r \, dr \, d\theta \over \int_0^{2\pi} \int_0^{+\infty} \sigma_q(r, \theta) \, r \, dr \, d\theta } \ . \]

Then, by construction, the new source $\sigma' = \sigma_m + \lambda \sigma_q$ has a vanishing monopolar term.

Parameters:
sou_m [input] matter source term $\sigma_m$
sou_q [input] quadratic source term $\sigma_q$
Returns:
value of $\lambda$

Definition at line 75 of file et_rot_lambda_grv2.C.

References Valeur::c, Cmp::check_dzpuis(), Valeur::coef_i(), Map_radial::dxdr, Map_af::get_alpha(), Map_af::get_beta(), Valeur::get_etat(), Cmp::get_etat(), Tbl::get_etat(), Mg3d::get_grille3d(), Map::get_mg(), Cmp::get_mp(), Mg3d::get_np(), Mg3d::get_nr(), Mg3d::get_nt(), Mg3d::get_nzone(), Mg3d::get_type_r(), Map_af::set_alpha(), Map_af::set_beta(), Tbl::t, Mtbl::t, Cmp::va, Map::val_r(), Grille3d::x, and Map_radial::xsr.

double Etoile_rot::lspec_isco (  )  const [virtual, inherited]

Angular momentum of a particle on the ISCO.

Definition at line 280 of file et_rot_isco.C.

References Etoile_rot::p_lspec_isco, and Etoile_rot::r_isco().

double Et_rot_mag::MagMom (  )  const

Magnetic Momentum $\cal M$ in SI units.

Definition at line 182 of file et_rot_mag_global.C.

References A_phi, Cmp::asymptot(), Cmp::get_etat(), Map::get_mg(), Mg3d::get_nt(), Mg3d::get_nzone(), Etoile::mp, and pow().

Tenseur Et_rot_mag::Magn (  )  const

Computes the magnetic field spherical components in Lorene's units.

Definition at line 160 of file et_rot_mag_global.C.

References Etoile::a_car, A_phi, B_phi, Etoile_rot::bbb, Cmp::div_rsint(), Cmp::dsdr(), Map::get_bvect_spher(), Etoile::mp, Cmp::set(), Valeur::set_base(), sqrt(), Cmp::srdsdt(), and Cmp::va.

void Et_rot_mag::magnet_comput ( const int  adapt_flag,
Cmp(*)(const Cmp &x, const double)  f_j,
Param par_poisson_At,
Param par_poisson_Avect 
)

Computes the electromagnetic quantities solving the Maxwell equations (6) and (7) of [Bocquet, Bonazzola, Gourgoulhon and Novak, Astron.

Astrophys. 301 , 757 (1995)]. In the case of a perfect conductor, le electromagnetic potential may have a discontinuous derivative across star's surface.

Parameters:
conduc [input] flag: 0 for an isolator, 1 for a perfect conductor
adapt_flag [input] flag: if 0 the mapping is NOT adapted to star's surface
f_j [input] current or charge coupling function (see Bocquet et al. 1995).
par_poisson_At [input] parameters for controlling the solution of the Poisson equation for At potential (see file et_rot_mag_equil.C)
par_poisson_Avect [input] parameters for controlling the solution of vector Poisson equation for magnetic potential (see file et_rot_mag_equil.C)

Reimplemented in Et_magnetisation.

virtual void Et_rot_mag::magnet_comput_plus ( const int  adapt_flag,
const int  initial_j,
const Tbl  an_j,
Cmp(*)(const Cmp &x, const Tbl f_j,
const Tbl  bn_j,
Cmp(*)(const Cmp &x, const Tbl g_j,
Cmp(*)(const Cmp &x, const Tbl N_j,
Param par_poisson_At,
Param par_poisson_Avect 
) [virtual]

Computes the electromagnetic quantities solving the Maxwell equations (6) and (7) of [Bocquet, Bonazzola, Gourgoulhon and Novak, Astron.

Astrophys. 301 , 757 (1995)]. In the case of a perfect conductor, le electromagnetic potential may have a discontinuous derivative across star's surface.

Parameters:
adapt_flag [input] flag: if 0 the mapping is NOT adapted to star's surface
initial_j [input] flag: initial current for the iteration: 0= no current, 1=dipolar-like current , 2= quadrupolar-like current
a_j0 [input] amplitude of the non-force free current
f_j [input] current coupling function (non-FF part) (see Bocquet et al. 1995).
b_j0 [input] amplitude of the force free current
g_j [input] current coupling function (FF-part)
N_j [input] current coupling function (FF-part)
par_poisson_At [input] parameters for controlling the solution of the Poisson equation for At potential (see file et_rot_mag_equil.C)
par_poisson_Avect [input] parameters for controlling the solution of vector Poisson equation for magnetic potential (see file et_rot_mag_equil.C)
double Etoile_rot::mass_b (  )  const [virtual, inherited]
double Et_rot_mag::mass_g (  )  const [virtual]
void Et_rot_mag::MHD_comput (  )  [virtual]

Computes the electromagnetic part of the stress-energy tensor.

Reimplemented in Et_magnetisation.

Definition at line 109 of file et_rot_mag_global.C.

References Etoile::a_car, A_phi, A_t, Etoile_rot::b_car, E_em, flat_scalar_prod_desal(), Tenseur::gradient_spher(), Jp_em, Etoile::nnn, Spp_em, Srr_em, and Etoile_rot::tnphi.

double Et_rot_mag::mom_quad (  )  const [virtual]

Quadrupole moment.

The quadrupole moment Q is defined according to Eq. (7) of [Salgado, Bonazzola, Gourgoulhon and Haensel, Astron. Astrophys. 291 , 155 (1994)]. At the Newtonian limit it is related to the component ${\bar I}_{zz}$ of the MTW (1973) reduced quadrupole moment ${\bar I}_{ij}$ by: $Q = -3/2 {\bar I}_{zz}$. Note that Q is the negative of the quadrupole moment defined by Laarakkers and Poisson, Astrophys. J. 512 , 282 (1999).

Reimplemented from Etoile_rot.

Definition at line 499 of file et_rot_mag_global.C.

References Etoile::a_car, Etoile_rot::ak_car, Etoile_rot::bbb, Cmp::check_dzpuis(), Etoile::ener_euler, flat_scalar_prod(), Cmp::get_etat(), Tenseur::gradient_spher(), Cmp::inc2_dzpuis(), log(), Etoile_rot::logn, Etoile::mp, Valeur::mult_ct(), Cmp::mult_r(), Etoile::nbar, Etoile_rot::p_mom_quad, Etoile::relativistic, Etoile::s_euler, Tenseur::set(), Tenseur::set_std_base(), Spp_em, and Cmp::va.

void Et_rot_mag::operator= ( const Et_rot_mag et  ) 

Assignment to another Et_rot_mag.

Reimplemented from Etoile_rot.

Reimplemented in Et_magnetisation.

Definition at line 279 of file et_rot_mag.C.

References a_j, A_phi, A_t, B_phi, conduc, del_deriv(), E_em, j_phi, j_t, Jp_em, Q, Spp_em, and Srr_em.

ostream & Et_rot_mag::operator>> ( ostream &  ost  )  const [virtual]

Operator >> (virtual function called by the operator <<).

Reimplemented from Etoile_rot.

Reimplemented in Et_magnetisation.

Definition at line 332 of file et_rot_mag.C.

References a_j, Elec(), Map::get_mg(), Mg3d::get_nt(), GyroMag(), is_conduct(), Etoile_rot::l_surf(), MagMom(), Magn(), mass_g(), Etoile::mp, Etoile::nzet, pow(), Etoile::press, Q, Q_comput(), Q_int(), and Etoile::xi_surf().

void Etoile_rot::partial_display ( ostream &  ost  )  const [protected, virtual, inherited]
double Et_rot_mag::Q_comput (  )  const

Computed charge deduced from the asymptotic behaviour of At [SI units].

Definition at line 207 of file et_rot_mag_global.C.

References A_t, Cmp::asymptot(), Cmp::get_etat(), Map::get_mg(), Mg3d::get_nzone(), Etoile::mp, and pow().

double Et_rot_mag::Q_int (  )  const

Computed charge from the integration of charge density over the star (i.e.

without surface charge) [SI units].

Definition at line 228 of file et_rot_mag_global.C.

References Etoile::a_car, Etoile_rot::bbb, Tenseur::get_etat(), Cmp::integrale(), j_t, Etoile::nbar, Etoile::nnn, pow(), Etoile::relativistic, and Cmp::std_base_scal().

double Etoile_rot::r_circ (  )  const [virtual, inherited]
double Etoile_rot::r_isco ( ostream *  ost = 0x0  )  const [virtual, inherited]

Circumferential radius of the innermost stable circular orbit (ISCO).

Parameters:
ost output stream to give details of the computation; if set to 0x0 [default value], no details will be given.

Definition at line 80 of file et_rot_isco.C.

References Param::add_cmp(), Param::add_int(), Cmp::annule(), Etoile_rot::bbb, Cmp::dsdr(), Map::get_mg(), Mg3d::get_nzone(), Etoile::mp, Etoile::nnn, Etoile_rot::nphi, Etoile::nzet, Etoile_rot::p_espec_isco, Etoile_rot::p_f_eq, Etoile_rot::p_f_isco, Etoile_rot::p_lspec_isco, Etoile_rot::p_r_isco, Map::r, Etoile::ray_eq(), sqrt(), Cmp::std_base_scal(), Cmp::va, Valeur::val_point(), Map::val_r(), and zerosec().

double Etoile::ray_eq ( int  kk  )  const [inherited]
double Etoile::ray_eq (  )  const [inherited]
double Etoile::ray_eq_3pis2 (  )  const [inherited]
double Etoile::ray_eq_pi (  )  const [inherited]
double Etoile::ray_eq_pis2 (  )  const [inherited]
double Etoile::ray_pole (  )  const [inherited]

Coordinate radius at $\theta=0$ [r_unit].

Definition at line 411 of file etoile_global.C.

References Map::get_mg(), Mg3d::get_type_t(), Etoile::l_surf(), Etoile::mp, Etoile::p_ray_pole, Map::val_r(), and Etoile::xi_surf().

void Et_rot_mag::sauve ( FILE *  fich  )  const [virtual]

Save in a file.

Reimplemented from Etoile_rot.

Reimplemented in Et_magnetisation.

Definition at line 307 of file et_rot_mag.C.

References a_j, A_phi, A_t, B_phi, conduc, E_em, fwrite_be(), j_phi, j_t, Jp_em, Q, Tenseur::sauve(), Cmp::sauve(), Spp_em, and Srr_em.

void Et_rot_mag::set_der_0x0 (  )  const [protected, virtual]

Sets to 0x0 all the pointers on derived quantities.

Reimplemented from Etoile_rot.

Definition at line 263 of file et_rot_mag.C.

void Etoile::set_enthalpy ( const Cmp ent_i  )  [inherited]

Assignment of the enthalpy field.

Definition at line 461 of file etoile.C.

References Etoile::del_deriv(), Etoile::ent, and Etoile::equation_of_state().

Map& Etoile::set_mp (  )  [inline, inherited]

Read/write of the mapping.

Definition at line 591 of file etoile.h.

References Etoile::mp.

double Et_rot_mag::tsw (  )  const [virtual]
void Etoile_rot::update_metric (  )  [inherited]

Computes metric coefficients from known potentials.

The calculation is performed starting from the quantities logn , dzeta , tggg and shift , which are supposed to be up to date. From these, the following fields are updated: nnn , a_car , bbb and b_car .

Definition at line 65 of file et_rot_upmetr.C.

References Etoile::a_car, Etoile_rot::b_car, Etoile_rot::bbb, Etoile_rot::del_deriv(), Cmp::div_rsint(), Etoile_rot::dzeta, exp(), Etoile_rot::extrinsic_curvature(), Etoile_rot::logn, Etoile::nnn, Tenseur::set(), Tenseur::set_etat_qcq(), Tenseur::set_std_base(), Etoile_rot::tggg, and Etoile::unsurc2.

const Tbl & Etoile::xi_surf (  )  const [inherited]

Description of the stellar surface: returns a 2-D Tbl containing the values of the radial coordinate $\xi$ on the surface at the collocation points in $(\theta', \phi')$.

The stellar surface is defined as the location where the enthalpy (member ent ) vanishes.

Definition at line 97 of file etoile_global.C.

References Etoile::l_surf(), Etoile::p_l_surf, and Etoile::p_xi_surf.

double Etoile_rot::z_eqb (  )  const [virtual, inherited]
double Etoile_rot::z_eqf (  )  const [virtual, inherited]
double Etoile_rot::z_pole (  )  const [virtual, inherited]

Redshift factor at North pole.

Definition at line 495 of file et_rot_global.C.

References Etoile::nnn, Etoile_rot::p_z_pole, and Etoile::ray_pole().


Friends And Related Function Documentation

ostream& operator<< ( ostream &  ,
const Etoile  
) [friend, inherited]

Display.


Member Data Documentation

Tenseur Etoile::a_car [protected, inherited]

Total conformal factor $A^2$.

Definition at line 503 of file etoile.h.

double Et_rot_mag::a_j [protected]

Amplitude of the curent/charge function.

Definition at line 169 of file et_rot_mag.h.

Cmp Et_rot_mag::A_phi [protected]

$\varphi$-component of the electromagnetic potential 1-form divided by $\mu_0$.

Definition at line 144 of file et_rot_mag.h.

Cmp Et_rot_mag::A_t [protected]

t-component of the elecctromagnetic potential 1-form, divided by $\mu_0$.

Definition at line 139 of file et_rot_mag.h.

Tenseur Etoile_rot::ak_car [protected, inherited]

Scalar $A^2 K_{ij} K^{ij}$.

For axisymmetric stars, this quantity is related to the derivatives of $N^\varphi$ by

\[ A^2 K_{ij} K^{ij} = {B^2 \over 2 N^2} \, r^2\sin^2\theta \, \left[ \left( {\partial N^\varphi \over \partial r} \right) ^2 + {1\over r^2} \left( {\partial N^\varphi \over \partial \theta} \right) ^2 \right] \ . \]

In particular it is related to the quantities $k_1$ and $k_2$ introduced by Eqs.~(3.7) and (3.8) of Bonazzola et al. Astron. Astrophys. 278 , 421 (1993) by

\[ A^2 K_{ij} K^{ij} = 2 A^2 (k_1^2 + k_2^2) \ . \]

Definition at line 1572 of file etoile.h.

Tenseur Etoile_rot::b_car [protected, inherited]

Square of the metric factor B.

Definition at line 1493 of file etoile.h.

Cmp Et_rot_mag::B_phi [protected]

$\varphi$-component of the magnetic field

Definition at line 146 of file et_rot_mag.h.

Tenseur Etoile_rot::bbb [protected, inherited]

Metric factor B.

Definition at line 1490 of file etoile.h.

Tenseur Etoile::beta_auto [protected, inherited]

Logarithm of the part of the product AN generated principaly by by the star.

Definition at line 494 of file etoile.h.

int Et_rot_mag::conduc [protected]

Flag: conduc=0->isolator, 1->perfect conductor.

Definition at line 170 of file et_rot_mag.h.

Tenseur Etoile::d_logn_auto_div [protected, inherited]

Gradient of logn_auto_div (if k_div!=0 ).

Definition at line 489 of file etoile.h.

Tenseur& Etoile_rot::dzeta [protected, inherited]

Metric potential $\zeta = \ln(AN)$ = beta_auto.

Definition at line 1520 of file etoile.h.

electromagnetic energy density in the Eulerian frame

Definition at line 150 of file et_rot_mag.h.

Tenseur Etoile::ener [protected, inherited]

Total energy density in the fluid frame.

Definition at line 448 of file etoile.h.

Tenseur Etoile::ener_euler [protected, inherited]

Total energy density in the Eulerian frame.

Definition at line 453 of file etoile.h.

Tenseur Etoile::ent [protected, inherited]

Log-enthalpy (relativistic case) or specific enthalpy (Newtonian case).

Definition at line 445 of file etoile.h.

const Eos& Etoile::eos [protected, inherited]

Equation of state of the stellar matter.

Reimplemented in Et_rot_bifluid.

Definition at line 440 of file etoile.h.

Tenseur Etoile::gam_euler [protected, inherited]

Lorentz factor between the fluid and Eulerian observers.

Definition at line 459 of file etoile.h.

Cmp Et_rot_mag::j_phi [protected]

$\varphi$-component of the current 4-vector

Definition at line 148 of file et_rot_mag.h.

Cmp Et_rot_mag::j_t [protected]

t-component of the current 4-vector

Definition at line 147 of file et_rot_mag.h.

$\varphi$ component of the electromagnetic momentum density 3-vector, as measured in the Eulerian frame.

Definition at line 156 of file et_rot_mag.h.

int Etoile::k_div [protected, inherited]

Index of regularity of the gravitational potential logn_auto .

If k_div=0 , logn_auto contains the total potential generated principaly by the star, otherwise it should be supplemented by logn_auto_div .

Definition at line 438 of file etoile.h.

Tenseur Etoile_rot::khi_shift [protected, inherited]

Scalar $\chi$ used in the decomposition of shift , following Shibata's prescription [Prog.

Theor. Phys. 101 , 1199 (1999)] :

\[ N^i = {7\over 8} W^i - {1\over 8} \left(\nabla^i\chi+\nabla^iW^kx_k\right) \]

Definition at line 1546 of file etoile.h.

Tenseur& Etoile_rot::logn [protected, inherited]

Metric potential $\nu = \ln N$ = logn_auto.

Definition at line 1507 of file etoile.h.

Tenseur Etoile::logn_auto [protected, inherited]

Total of the logarithm of the part of the lapse N generated principaly by the star.

In the Newtonian case, this is the Newtonian gravitational potential (in units of $c^2$).

Definition at line 472 of file etoile.h.

Tenseur Etoile::logn_auto_div [protected, inherited]

Divergent part (if k_div!=0 ) of the logarithm of the part of the lapse N generated principaly by the star.

Definition at line 485 of file etoile.h.

Tenseur Etoile::logn_auto_regu [protected, inherited]

Regular part of the logarithm of the part of the lapse N generated principaly by the star.

In the Newtonian case, this is the Newtonian gravitational potential (in units of $c^2$).

Definition at line 479 of file etoile.h.

Map& Etoile::mp [protected, inherited]

Mapping associated with the star.

Definition at line 416 of file etoile.h.

Tenseur Etoile::nbar [protected, inherited]

Baryon density in the fluid frame.

Definition at line 447 of file etoile.h.

Tenseur Etoile::nnn [protected, inherited]

Total lapse function.

Definition at line 497 of file etoile.h.

Tenseur Etoile_rot::nphi [protected, inherited]

Metric coefficient $N^\varphi$.

Definition at line 1496 of file etoile.h.

Tenseur Etoile_rot::nuf [protected, inherited]

Part of the Metric potential $\nu = \ln N$ = logn generated by the matter terms.

Definition at line 1512 of file etoile.h.

Tenseur Etoile_rot::nuq [protected, inherited]

Part of the Metric potential $\nu = \ln N$ = logn generated by the quadratic terms.

Definition at line 1517 of file etoile.h.

int Etoile::nzet [protected, inherited]

Number of domains of *mp occupied by the star.

Definition at line 421 of file etoile.h.

double Etoile_rot::omega [protected, inherited]

Rotation angular velocity ([f_unit] ).

Definition at line 1487 of file etoile.h.

double* Etoile_rot::p_angu_mom [mutable, protected, inherited]

Angular momentum.

Definition at line 1617 of file etoile.h.

double* Etoile_rot::p_aplat [mutable, protected, inherited]

Flatening r_pole/r_eq.

Definition at line 1622 of file etoile.h.

double* Etoile_rot::p_espec_isco [mutable, protected, inherited]

Specific energy of a particle on the ISCO.

Definition at line 1630 of file etoile.h.

double* Etoile_rot::p_f_eq [mutable, protected, inherited]

Orbital frequency at the equator.

Definition at line 1633 of file etoile.h.

double* Etoile_rot::p_f_isco [mutable, protected, inherited]

Orbital frequency of the ISCO.

Definition at line 1628 of file etoile.h.

double* Etoile_rot::p_grv2 [mutable, protected, inherited]

Error on the virial identity GRV2.

Definition at line 1619 of file etoile.h.

double* Etoile_rot::p_grv3 [mutable, protected, inherited]

Error on the virial identity GRV3.

Definition at line 1620 of file etoile.h.

Itbl* Etoile::p_l_surf [mutable, protected, inherited]

Description of the stellar surface: 2-D Itbl containing the values of the domain index l on the surface at the collocation points in $(\theta', \phi')$.

Definition at line 527 of file etoile.h.

double* Etoile_rot::p_lspec_isco [mutable, protected, inherited]

Specific angular momentum of a particle on the ISCO.

Definition at line 1632 of file etoile.h.

double* Etoile::p_mass_b [mutable, protected, inherited]

Baryon mass.

Definition at line 535 of file etoile.h.

double* Etoile::p_mass_g [mutable, protected, inherited]

Gravitational mass.

Definition at line 536 of file etoile.h.

double* Etoile_rot::p_mom_quad [mutable, protected, inherited]

Quadrupole moment.

Definition at line 1626 of file etoile.h.

double* Etoile_rot::p_r_circ [mutable, protected, inherited]

Circumferential radius.

Definition at line 1621 of file etoile.h.

double* Etoile_rot::p_r_isco [mutable, protected, inherited]

Circumferential radius of the ISCO.

Definition at line 1627 of file etoile.h.

double* Etoile::p_ray_eq [mutable, protected, inherited]

Coordinate radius at $\phi=0$, $\theta=\pi/2$.

Definition at line 509 of file etoile.h.

double* Etoile::p_ray_eq_3pis2 [mutable, protected, inherited]

Coordinate radius at $\phi=3\pi/2$, $\theta=\pi/2$.

Definition at line 518 of file etoile.h.

double* Etoile::p_ray_eq_pi [mutable, protected, inherited]

Coordinate radius at $\phi=\pi$, $\theta=\pi/2$.

Definition at line 515 of file etoile.h.

double* Etoile::p_ray_eq_pis2 [mutable, protected, inherited]

Coordinate radius at $\phi=\pi/2$, $\theta=\pi/2$.

Definition at line 512 of file etoile.h.

double* Etoile::p_ray_pole [mutable, protected, inherited]

Coordinate radius at $\theta=0$.

Definition at line 521 of file etoile.h.

double* Etoile_rot::p_tsw [mutable, protected, inherited]

Ratio T/W.

Definition at line 1618 of file etoile.h.

Tbl* Etoile::p_xi_surf [mutable, protected, inherited]

Description of the stellar surface: 2-D Tbl containing the values of the radial coordinate $\xi$ on the surface at the collocation points in $(\theta', \phi')$.

Definition at line 533 of file etoile.h.

double* Etoile_rot::p_z_eqb [mutable, protected, inherited]

Backward redshift factor at equator.

Definition at line 1624 of file etoile.h.

double* Etoile_rot::p_z_eqf [mutable, protected, inherited]

Forward redshift factor at equator.

Definition at line 1623 of file etoile.h.

double* Etoile_rot::p_z_pole [mutable, protected, inherited]

Redshift factor at North pole.

Definition at line 1625 of file etoile.h.

Tenseur Etoile::press [protected, inherited]

Fluid pressure.

Definition at line 449 of file etoile.h.

double Et_rot_mag::Q [protected]

In the case of a perfect conductor, the requated baryonic charge.

For an isolator, the charge/baryon.

Definition at line 168 of file et_rot_mag.h.

bool Etoile::relativistic [protected, inherited]

Indicator of relativity: true for a relativistic star, false for a Newtonian one.

Definition at line 426 of file etoile.h.

Tenseur Etoile::s_euler [protected, inherited]

Trace of the stress tensor in the Eulerian frame.

Definition at line 456 of file etoile.h.

Tenseur Etoile::shift [protected, inherited]

Total shift vector.

Definition at line 500 of file etoile.h.

$\varphi \varphi$ component of the electromagnetic stress 3-tensor, as measured in the Eulerian frame.

Definition at line 162 of file et_rot_mag.h.

rr component of the electromagnetic stress 3-tensor, as measured in the Eulerian frame. (not used and set to 0, should be supressed)

Definition at line 159 of file et_rot_mag.h.

Cmp Etoile_rot::ssjm1_dzeta [protected, inherited]

Effective source at the previous step for the resolution of the Poisson equation for dzeta .

Definition at line 1589 of file etoile.h.

Cmp Etoile_rot::ssjm1_khi [protected, inherited]

Effective source at the previous step for the resolution of the Poisson equation for the scalar $\chi$ by means of Map_et::poisson .

$\chi$ is an intermediate quantity for the resolution of the elliptic equation for the shift vector $N^i$

Definition at line 1602 of file etoile.h.

Cmp Etoile_rot::ssjm1_nuf [protected, inherited]

Effective source at the previous step for the resolution of the Poisson equation for nuf by means of Map_et::poisson .

Definition at line 1578 of file etoile.h.

Cmp Etoile_rot::ssjm1_nuq [protected, inherited]

Effective source at the previous step for the resolution of the Poisson equation for nuq by means of Map_et::poisson .

Definition at line 1584 of file etoile.h.

Cmp Etoile_rot::ssjm1_tggg [protected, inherited]

Effective source at the previous step for the resolution of the Poisson equation for tggg .

Definition at line 1594 of file etoile.h.

Tenseur Etoile_rot::ssjm1_wshift [protected, inherited]

Effective source at the previous step for the resolution of the vector Poisson equation for $W^i$.

$W^i$ is an intermediate quantity for the resolution of the elliptic equation for the shift vector $N^i$ (Components with respect to the Cartesian triad associated with the mapping mp )

Definition at line 1611 of file etoile.h.

Tenseur Etoile_rot::tggg [protected, inherited]

Metric potential $\tilde G = (NB-1) r\sin\theta$.

Definition at line 1523 of file etoile.h.

Tenseur_sym Etoile_rot::tkij [protected, inherited]

Tensor ${\tilde K_{ij}}$ related to the extrinsic curvature tensor by ${\tilde K_{ij}} = B^{-2} K_{ij}$.

tkij contains the Cartesian components of ${\tilde K_{ij}}$.

Definition at line 1553 of file etoile.h.

Tenseur Etoile_rot::tnphi [protected, inherited]

Component $\tilde N^\varphi = N^\varphi r\sin\theta$ of the shift vector.

Definition at line 1501 of file etoile.h.

Tenseur Etoile::u_euler [protected, inherited]

Fluid 3-velocity with respect to the Eulerian observer.

Definition at line 462 of file etoile.h.

double Etoile::unsurc2 [protected, inherited]

$1/c^2$ : unsurc2=1 for a relativistic star, 0 for a Newtonian one.

Definition at line 431 of file etoile.h.

Tenseur Etoile_rot::uuu [protected, inherited]

Norm of u_euler.

Definition at line 1504 of file etoile.h.

Tenseur Etoile_rot::w_shift [protected, inherited]

Vector $W^i$ used in the decomposition of shift , following Shibata's prescription [Prog.

Theor. Phys. 101 , 1199 (1999)] :

\[ N^i = {7\over 8} W^i - {1\over 8} \left(\nabla^i\chi+\nabla^iW^kx_k\right) \]

NB: w_shift contains the components of $W^i$ with respect to the Cartesian triad associated with the mapping mp .

Definition at line 1536 of file etoile.h.


The documentation for this class was generated from the following files:

Generated on 7 Oct 2014 for LORENE by  doxygen 1.6.1